Том 22. Сон разума. Математическая логика и ее парадоксы
На пути своего развития математика периодически переживает переломные моменты, и эти кризисы всякий раз вынуждают мыслителей открывать все новые и новые горизонты. Стремление ко все большей степени абстракции и повышению строгости математических рассуждений неминуемо привело к размышлениям об основах самой математики и логических законах, на которые она опирается. Однако именно в логике, как известно еще со времен Зенона Элейского, таятся парадоксы — неразрешимые на первый (и даже на второй) взгляд утверждения, которые, с одной стороны, грозят разрушить многие стройные теории, а с другой — дают толчок их новому осмыслению.
Имена Давида Гильберта, Бертрана Рассела, Курта Гёделя, Алана Тьюринга ассоциируются именно с рождением совершенно новых точек зрения на, казалось бы, хорошо изученные явления. Так давайте же повторим удивительный путь, которым прошли эти ученые, выстраивая новый фундамент математики.
Супруги спорят между собой: «Ты всегда мне перечишь», — говорит жена. «Это не так», — возражает муж. «Видишь? Ты сам же это подтверждаешь», — снова критикует его жена. «Милая, ты права, я всего лишь тебе перечу», — признает муж в попытках положить конец спору. «Вот! Ты сам в этом признался!» — кричит жена и хлопает дверью. От подобных сцен не застрахован ни один, даже самый счастливый брак. Если бы философ и математик Бертран Рассел никогда не переживал подобные моменты, он бы не женился четыре раза. И все же его семейные ссоры, должно быть, завершались совершенно не так, как у других людей: после фразы «Ты сам же это подтверждаешь» Рассел, должно быть, помолчал несколько секунд и, сказав: «Да, дорогая, это очень интересно», закрылся в своем кабинете.