АКТУАЛЬНОСТЬ СЛОЖНОСТИ Вероятность и моделирование динамических систем - страница 19
Особенность идеализации, скрытой за данной формой зависимости, состоит в том, что причинная связь ограничивается со стороны требования непрерывности ее переноса. Это и служит основанием для применения дифференциальных уравнений в области математического выражения динамических законов, поскольку решение дифференциальных уравнений предполагает наличие непрерывной функции у=ф(х), определенной в некотором интервале (а,в). Соответственно, признание лишь данной формы выражения причинности и закономерности означает введение представления о последний только как о неизбежности, ибо принципиально результат, действие запрограммированы в системе дифференциальных уравнений.
С содержательной, качественной стороны сложные случаи причинения характеризуются отсутствием простой дедуктивной выводимости следствия из причины. В этой ситуации налицо разрыв постепенности, некоторая иррациональность (см. Ю. В. Сачков. «Введение в вероятностный мир», с.167). Она связана с порождением нового, с возникновением нового качества, новых возможностей и т.д.
Вместе с тем, важным признаком понятия «статистическая закономерность» является известная неоднозначность предсказания поведения системы. На этом основании строится дедукция, приводящая к утверждению, что за статистической закономерностью кроится иная, нежели за динамической закономерностью, форма причинной связи. Вероятностная природа статистических закономерностей истолковывается в данном случае как особая черта причинной связи, получающая свое выражение посредством понятия «возможность». Т.е. принимают во внимание следующее: при заданной причине следствие имеет ряд возможностей реализации. Вероятность тогда характеризует не что иное, как множественность путей реализации следствия.
При ближайшем рассмотрении выявляется, однако, что подобное истолкование не включает вероятность в структуру отдельной изолированной цепи причинения. Здесь вероятность служит качественным выражением неопределенности некоторой общей ситуации, в которой фиксируемому воздействию ставится в соответствие разброс или набор результатов. Известная упорядоченность этого набора результатов позволяет ввести количественную меру вероятности, которая способна выражать степень той или иной возможности реализации следствия. Причем, надо учитывать, что введение степени такой возможности осуществимо на некотором обобщенном уровне, связанном с отказом от рассмотрения конкретных цепей причинения во всех их деталях и подробностях. В определенном смысле слова статистическое выражение изменений материальной системы делает неразличимым отдельные изолированные цепи причинности.
Если исходить из того, что в основе динамической закономерности лежит причинная связь простого типа (изолированная причинная цепь, имеющая непрерывный характер), тогда применимость динамической закономерности к сложным случаям изменений оказывается возможной при допущении суммативности действия причинных рядов. Математическое описание такого изменения реализуется с помощью системы дифференциальных уравнений. При этом предполагается однозначность перехода от одного распределения микросостояний к другому, так что все микросостояния, характеризующие макросостояния системы, становятся различимыми как в перспективном плане изменений системы, так и в ретроспективном.
Статистический подход, применяемый для описания связи состояния системы, зиждется на принципиально иной основе, в чем легко убедиться, обратившись к постановке задач статистической физики. Он опирается на ряд важных допущений, как то: выполнимость эргодической гипотезы, конечность времени релаксации и монотонность возрастания термодинамической вероятности (осуществимость второго начала термодинамики). Принятие этих условий делает излишним прослеживание всех распределений микросостояний статистической системы. Добавлю, что с позиций термодинамического равновесия (максимального значения энтропии) существенное значение приобретает лишь некоторое общее для каждого из этих распределений отношение к равновесному состоянию, определяемое вероятностной мерой. Но тогда данный подход можно рассматривать как способ обобщенного выражения изменений системы.