Античная философия - страница 21
Современникам Парменида вся эта совокупность его учений и положений должна была казаться противоречащей всем обычным представлениям о природе и знании. Поэтому учение Парменида вызвало многочисленные возражения. Это были возражения со стороны тех, кто, опираясь на доверие к показаниям внешних чувств, хотел защитить против Парменида и реальность множества, и реальность изменения, и реальность движения, и возможность существования пространства вне вещей.
По-видимому, возражения были настолько серьезны и энергичны, что для школы Парменида возникла необходимость более строго обосновать свои основные утверждения, защитить их от направленных против них, очевидно, очень сильных и многочисленных возражений.
Задачу отстоять воззрения Парменида против выдвинутых возражений взял на себя ученик и друг Парменида Зенон [2]. Он родился в начале 5 в. до н. э. (480) и умер в 430 г. до н. э. От его сочинений дошли только многочисленные и небольшие по объему извлечения, сделанные позднейшими античными писателями. Из них на первое место должны быть поставлены свидетельства Аристотеля в «Физике», а также свидетельства Симплиция, комментатора аристотелевской «Физики». Они дают возможность характеризовать то новое, что внес Зенон в греческую науку сравнительно с Парменидом, при всей наивности его аргументации в деталях.
Зенон развил ряд аргументов в защиту учения Парменида. Метод, примененный им в этих аргументах, впоследствии дал основание Аристотелю назвать Зенона родоначальником «диалектики». Под «диалектикой» Аристотель в этом случае понимает искусство выяснения истины путем обнаружения внутренних противоречий, заключающихся в мыслях противника, и путем устранения этих противоречий.
Метод Зенона сходен с тем, который называется в математике «доказательством от противного». Зенон принимает — условно — тезисы противников Парменида. Он принимает, (1) что пространство может быть мыслимо как пустота, как отдельное от наполняющего пространство вещества; (2) что мыслимо существование множества вещей; (3) что может быть мыслимо движение. Приняв условно эти три предположения, Зенон доказывает, будто признание их ведет с необходимостью к противоречиям. Тем самым доказывается, что предположения эти ложны. Но если они ложны, то необходимо должны быть истинны противоречащие им утверждения. А это и есть утверждения Парменида. Стало быть, утверждения Парменида истинны: пустота, множество и движение немыслимы.
Для понимания смысла аргументации Зенона необходимо учитывать обстоятельство, отмеченное Лениным. В «Философских тетрадях» Ленин разъясняет, что ни Парменид, ни Зенон не отрицают реальности пустоты, множества, движения для наших, чувств. Они отрицают лишь возможность мыслить пустоту, мыслить множество и мыслить движение, не впадая при этом в противоречия.
Рассмотрим аргументы Зенона в отдельности по этим трем вопросам. Начнем с вопроса о мыслимости пустоты, т. е. пространства, отделенного от вещества. Если мы допустим существование такого пространства, то вступает в силу следующее рассуждение. Все существующее находится где-нибудь в пространстве. Но чтобы; существовать, пространство тоже должно находиться «где-нибудь», т. е. существовать во втором пространстве. Это второе пространство в свою очередь должно существовать в третьем пространстве, и так до бесконечности. Но это абсурдно. Следовательно, пространство как отдельное от вещества немыслимо.
Второй вопрос — о мыслимости множества. Допустим, что множество мыслимо. Тогда возникают вопросы: 1. Каким необходимо мыслить каждый в отдельности элемент этого множества? 2. Каким необходимо мыслить общее количество элементов множества: будет ли их сумма числом конечным или бесконечным? Исследование Зенона показывает, что по обоим этим вопросам получаются npoтиворечивые ответы. По первому вопросу — каким должен мыслиться каждый отдельный элемент множества — оказывается, что о каждом таком элементе необходимо придется отвечать, что он одновременно и не имеет никакой величины и бесконечно велик по величине. По второму вопросу — какой должна мыслиться сумма элементов множества — оказывается, что она необходимо должна мыслиться и как число конечное, и как число бесконечное.