Апории Зенона и проблема движения - страница 4

стр.

.

Мы считаем, что сказанное Уитроу верно. Промежуточное положение (0/1) с логической точки зрения вовсе не обязано наличествовать в какой-то момент времени, поскольку предположение о его отсутствии непротиворечиво [9]. Другой вопрос, что наши привычные представления о движении, опирающиеся интуицию непрерывности, оказываются неадекватными в дискретном случае. В этом отличие дискретной ситуации от ситуации с бесконечной делимостью пространственных и временных интервалов. Утверждение, что ряд ½>1, ½>2, ½>3,…, ½>n завершится, логически противоречиво, если n не ограничено. Аналогичным образом, необычная вычислительная машина Германа Вейля никогда не сможет завершить вычисления в какой-то момент времени из-за неограниченного числа шагов процесса пересчета множества натуральных чисел. Можно, используя понятие предела, просуммировать упомянутый ряд и получить единицу, или, вводя трансфинитные числа, допустить выполнение в ходе вычислений количества шагов, равного первому бесконечному числу ω. Такие построения уже будут непротиворечивыми. Но они обладают существенным, на наш взгляд, изъяном.

Осмысливая принципы, лежащие в основе теории множеств (которая может, как известно, рассматриваться в качестве фундамента современной математики), Дж. Р. Шенфилд указывает на “следующий фундаментальный вопрос: если дана совокупность S шагов, то существует ли шаг, следующий за каждым шагом из S?” [10] Рассматривая случаи, когда S состоит из единственного шага или из бесконечной последовательности шагов S>n, S>i,…, он отвечает на поставленный вопрос утвердительно: “В первых двух случаях мы отчетливо можем представить себе ситуацию, когда все шаги из S уже осуществлены” [11]. Применим эти рассуждения к апории Ахилл. Ряд ½>1, ½>2, ½>3,…, ½>n,… не может быть завершен, т. к. у него отсутствует последний элемент. Но представим себе, что Ахилл уже побывал в каждой из точек, которая следует за всеми точками бесконечного ряда и является концом пути. Движение, таким образом, завершено. Проблема, однако, в том и заключается, каким образом получилось так, что Ахилл побывал во всех точках не имеющего конца ряда ½>1, ½>2, ½>3,…, ½>n,…? Если уже “дано”, то и говорить не о чем – апория разрешается, фактически, путем постулирования наличия решения [12].

Логически все это непротиворечиво (вопреки мнению самого Зенона). Но здесь процесс движения, содержащий, по условию задачи, бесконечное число шагов, сводится, по сути, к трем шагам: на шаге 1 вводится ряд точек ½>1, ½>2, ½>3,…, ½>n,…, на шаге 2 постулируется, что Ахилл побывал в каждой из этих точек, а на шаге 3 делается вывод о завершении движения в конечной точке, не принадлежащей рассматриваемому ряду. В результате как бы “пересчитан” ряд, упорядоченный по типу ω+1. По видимости речь идет о бесконечном по числу шагов процессе, тогда как на деле процесс при таком подходе завершается за три шага. Сказанное приобретает бóльшую наглядность, если обратиться к симметричной ситуации с апорией Дихотомия. Здесь вначале движущееся тело поместим в точке старта. Затем добавим к имеющейся точке старта совокупность точек, упорядоченный по типу ω*, получив тем самым линейный порядок типа 1+ω*, и, на последнем шаге, постулируем, что тело побывало в каждой из точек ряда ω*. Значит, движение успешно началось, хотя между точкой старта и любой из последующих точек лежит бесконечное множество промежуточных точек. Снова перед нами процесс из трех шагов, и снова вопрос о принципиальной возможности пересчета бесконечного порядкового типа 1+ω* обходится путем постулирования преодоления бесконечности за один шаг.

Легко представить себе совокупности, упорядоченные по типам ω+1 и 1+ω*, в качестве данностей. Но вообразить процесс пошагового получения этих совокупностей элемент за элементом, в соответствии с порядком на них, логически невозможно. Неизбежно на каком-то шаге либо а) будет нарушен порядок прохождения элементов (наряду с движениями от предыдущих точек к последующим придется вводить скачки от последующих точек к предыдущим), либо б) потребуется постулировать переход не от элемента к элементу, а от