Азбука техники одинарной веревки - страница 8

стр.

Во втором примере на рисунке 4б высота свободного падения равна длине веревки, и f=2/2=1. Нагрузка на веревку и страховочную цепь будет значительно меньше, так как на каждый метр веревки приходится энергия, равная энергии падения тела с высоты всего в один метр (2 м высоты падения х 80 кгс веса = 160 кгс м энергии падения, распределенной на 2 м веревки = 80 кгс м энергии на каждый метр веревки).

Максимальный возможный фактор падения равен 2. Эта самая тяжелая степень падения при высоте, равной удвоенной длине веревки. Вероятность падения с таким фактором никогда не исключена при свободном лазании, если первый из связки сорвется в тот момент, когда веревка между двумя людьми не застрахована промежуточными крючьями.

При работе в шахте возможные падения при правильно сделанной навеске имеют гораздо меньшую степень. Их фактор обычно не превышает 0.3 0.5. Именно это позволяет в практике спелеологии использовать более жесткую, или так называемую статическую веревку.


2.2.5. Время падения. Импульс силы

Для абсолютно твердого тела, которое падает на абсолютно твердую поверхность, т.е. при полном отсутствии эластичных элементов, время удара стремится к нулю, а его сила - к бесконечности. Из-за наличия эластичных элементов в страховочной цепи и, в первую очередь, веревки, для преобразования высвобождающейся при падении энергии необходимо некоторое время, а сила удара зависит прежде всего от динамических свойств веревки.

Произведение силы удара на время ее действия Fудар tудар называется импульсом силы. В то время как пиковая динамическая нагрузка при фиксированном факторе падения не зависит от абсолютной высоты, импульс силы зависит от высоты H и нарастает с увеличением скорости падающего тела. Например, если для H1 необходимое время остановки падения есть t1, а для H2 - время t2 и H2/H1=R, то t2/t1=sqrt(R), или при H1=1 м и t1=0.2 с время t2 для остановки падения с высоты H2=9 м будет: H2/H1=R=9/1=9; t2/t1=sqrt(9)=3, или t2=0.2х3=0.6 с, или втрое больше. Следовательно, больше будет и импульс силы (рис.5).



Его продолжительность не зависит от веревки, так как мы установили, что работа каждого метра веревки (2.2.4.) при одном и том же факторе падения одинакова и не зависит от абсолютной высоты падения. Для спелеолога это, однако, не так, поскольку нагрузка на него действовала бы дольше.

При небольшом произведении приложенной силы на продолжительность удара, т.е. при кратком импульсе силы, человеческое тело легче выдерживает большую нагрузку. Такая же нагрузка, но при более продолжительном импульсе силы, т.е. при большем произведении приложенной силы на продолжительность удара, может привести к гораздо более тяжелым последствиям.


Запомните:

- при падении с большей высоты нагрузка дольше действует на тело. При прочих равных условиях это опаснее.


2.2.6. Факторы, уменьшающие нагрузку при поглощении динамического удара

До сих пор мы рассматривали вопросы, связанные с нагрузкой на веревку при поглощении динамического удара, с точки зрения так называемого свободного падения. При работе в пропасти такие условия возникают сравнительно редко. Обычно падение сопровождается более или менее сильными ударами или трением тела спелеолога о стены колодца. Это до известной степени уменьшает скорость падения, а следовательно и его энергию.

С другой стороны, веревка - не единственный элемент страховочной цепи, способный поглощать энергию. Пока участием крючьев, карабинов и другого металлического снаряжения в этом процессе можно пренебречь, но надо учитывать узлы, которые затягиваются, страховочный конец, который удлиняется, обвязку, стропа которой не статична, мышечные ткани спелеолога, которые также обладают некоторой эластичностью. Вместе взятые, эти факторы, хотя и незначительно, но увеличивают общую деформацию страховочной цепи и способствуют уменьшению силы рывка. Экспериментами установлено, что если при свободном падении, например, твердое тело массой 80 кг вызывает пиковую динамическую нагрузку, равную 720 кгс, то при падении человека в тех же условиях ПДН достигает только 550 кгс, т.е. мышечные ткани и обвязки могут поглотить до 25% энергии динамического удара.