Беседы о рентгеновских лучах - страница 46
В 30-е годы настоящую сенсацию вызвала находка Д. Бернала и Д. Кроуфут-Ходжкин. На удивление коллегам, английские ученые взялись за рентгеноструктурный анализ веществ, для которых он казался неприменимым, — белков. Считалось, что эти длинные органические молекулы, сворачиваясь в клубки, образуют бесформенную, бесструктурную массу. И вот сюрприз: съемка обнаружила у них столь ярко выраженную внутреннюю упорядоченность, что заставила говорить об их кристаллоподобном состоянии.
Но когда английский биохимик М. Перуц в 1937 году вознамерился разобраться таким путем в «архитектуре» гемоглобина, эта затея прослыла бесперспективной. «Мои товарищи не могли смотреть на меня без сожаления, — вспоминает ученый. — В ту пору самым сложным органическим веществом, чье строение было установлено с помощью рентгеноструктурного анализа, оставался краситель фталоцианин, состоящий из 58 атомов. Как мог я надеяться выяснить расположение тысяч атомов в молекуле гемоглобина?»
Проблема оказалась действительно архитрудной, но все же была решена, хотя и не скоро, через 20 с лишним лет. Так появилась широкоизвестная ныне трехмерная модель этого важного биополимера, состоящего из 10 тысяч атомов водорода, углерода, азота, кислорода, серы и железа. Оправдалась ставка на рентгеноструктурный анализ; собственно, он только и подавал надежды на удачу.
Благодаря ему стала возможной и пространственная модель ДНК — дезоксирибонуклеиновой кислоты, содержащей сотни тысяч атомов. Эту знаменитую «двойную спираль» предложили в 1953 году Д. Уотсон и Ф. Крик, воспользовавшись исключительно четкими дифракционными картинами ДНК, полученными М. Уилкинсом. Именно тогда, по мнению специалистов, произошел «гигантский взрыв, изменивший лицо генетики»: была установлена молекулярная природа наследственности.
В 1962 году все трое, а заодно с ними М. Перуц и Д. Кендрю, расшифровавший структуру миоглобина (мышечного белка), удостоились Нобелевской премии. Интересно: из пяти лауреатов только Д. Уотсон — биолог, остальные, по сути дела, физики.
Да, своим нынешним рывком наука о жизни во многом обязана именно физике, ее арсеналу идей и методов. В частности, рентгеновской кристаллографии применительно к биополимерам.
Конечно, просвечивать их можно и гамма-радиацией. Но для нее они слишком прозрачны. Да и она для них слишком разрушительна. Способна вызвать, например, денатурацию белка — его необратимые изменения (структурные!), наподобие тех, которые наблюдал каждый из нас, поджаривая яичницу.
Понятно, было бы желательно использовать самое безобидное проникающее излучение. Значит, как можно более мягкое? Нет, годится лишь такое, у которого длина волны близка к поперечнику атома (около 10>–8 сантиметра). То есть именно рентгеновское, пусть не самое жесткое (10>–12 сантиметра), но и не самое мягкое (10>–5 сантиметра). Ясно, почему ультрафиолет здесь тем более не годится, не говоря уж о видимом свете.
Представьте: ветер гонит волны по воде. Мы сразу замечаем, если они набегают на какое-то препятствие, даже когда оно скрыто от нас. И могут кое-что рассказать нам о его форме, величине. Наиболее полной информация будет тогда лишь, когда они по своим размерам несколько меньше огибаемого ими объекта. Так и при рассеянии рентгеновских волн веществом. Ведь их пропускают именно затем, чтобы как можно больше узнать о расположении атомов и расстояниях между ними в кристаллоподобном материале.
Разумеется, существует не только рентгено-, но также электроно- и нейтронография. У каждой свои преимущества. И свои недостатки. Чтобы получить столь же четкую дифракционную картину с помощью нейтронов, нужна более сложная техника: их пучок, выпущенный даже из самого мощного ядерного реактора, в тысячу раз менее плотен, чем поток рентгеновских квантов из обычной трубки. С другой стороны, есть объекты, которые лучше исследовать нейтронографически. Пример — сплавы железа, кобальта, никеля.
Дело тут вот в чем. Рентгеновская радиация рассеивается электронными оболочками (а они у многих элементов настолько схожи, что для нее практически на одно лицо). Нейтроны же рассеиваются атомными ядрами. И способны «нащупать» разницу даже между близнецами — изотопами одного элемента, которые абсолютно неразличимы рентгенографически.