Биокосные системы Земли - страница 23
Первый вопрос, который рассмотрел Полынов, касался интенсивности миграции химических элементов при выветривании изверженных пород. Еще американский геолог Смит в 1917 г. применил оригинальный прием для решения этого вопроса. Он сравнил средний состав изверженных пород со средним составом речных вод, дренирующих такие породы, и пришел к выводу, что быстрее всего при выветривании покидают породы хлор и сера, затем кальций, натрий и марганец и слабее всего мигрируют железо и алюминий. Смит не развивал далее это направление научной мысли, и его труды не привели к разработке самостоятельной научной теории.
Б. Б. Полынов использовал пересчет Смита, развил его, но самое главное — положил в основу теории формирования коры выветривания (табл. 2).
Вот что писал сам ученый: «Мы видим, что состав растворенной в речной воде минеральной части существенно отличается от состава тех пород, которые отдают воде свои минеральные части. Мы видим, что хлор, составляющий ничтожную часть массы свежих, не тронутых выветриванием, первичных пород, в минеральном остатке речной воды превышает 6%. Это произошло, понятно, не потому, что в речную воду попал откуда-либо новый хлор, но потому, что его соединения в породах растворились в воде гораздо скорее, чем соединения других элементов.
Таблица 2. Относительная подвижность элементов при выветривании
Компонент | Средний состав массивных пород a>x | Средний состав минерального остатка различных вод b>x | Относительная подвижность элементов и соединений, по Б. Б. Полынову | Коэффициент водной миграции, по А. И. Перельману K>x = b>x / a>x |
---|---|---|---|---|
SiO>2 | 59,09 | 12,80 | 0,20 | 0,21 |
Al>2O>3 | 15,35 | 0,90 | 0,02 | 0,06 |
Fe>2O>3 | 7,29 | 0,40 | 0,04 | 0,06 |
Ca | 3,60 | 14,70 | 3,00 | 4,00 |
Mg | 2,11 | 4,90 | 1,30 | 2,3 |
Na | 2,97 | 9,50 | 2,40 | 3,2 |
K | 2,57 | 4,40 | 1,25 | 1,6 |
Cl>- | 0,05 | 6,75 | 100,00 | 133 |
SO>4>2- | 0,15 | 11,60 | 57,00 | 77 |
Представим себе, что в некоторый определенный срок времени какая-либо определенной величины масса горной породы отдает в раствор речной воды весь заключавшийся в ней хлор. Если бы соединения серы этой породы обладали бы такой же подвижностью, как и соединения хлора, то количество SO>4>2-, растворенного в речной воде, должно было быть в три раза больше, чем количество хлора, как это мы наблюдаем в составе горных пород (0,15 : 0,05 = 3), т. е. оно должно было бы составлять 20,25% всего минерального остатка. В действительности же оно, как мы видим, составляет только 11,6%, т. е. сера, выраженная в ионах SO>4>2-, перешла за этот же промежуток времени в раствор лишь в количестве 57% ее массы, заключенной в горной породе. Распространяя этот прием исчисления на все другие соединения и элементы, мы получаем числа, приведенные в 3-м столбце. Мы видим, что числа можно расчленить на несколько групп соответственно их порядку. Расположенные таким образом, они дают ясное представление о последовательных фазах, которые переживают накопления продуктов выветривания, а именно:
Первая фаза знаменуется тем, что продукты выветривания лишаются соединений хлора и серы. Само собой разумеется, что с этими анионами уходит и некоторое количество катионов, но значительная часть последних остается еще связанной с другими анионами и главным образом, понятно, в форме силикатов.
Во второй фазе продукты выветривания, уже лишенные соединений хлора и серы, лишаются щелочных и щелочноземельных оснований. Эта фаза расчленяется на две стадии, соответственно более высокой подвижности кальциево-натриевых соединений по сравнению с магнезиально-калийными.
В третьей фазе лишенные в значительной части щелочных и щелочноземельных оснований продукты выветривания лишаются кремнезема силикатов. И, наконец, в последней — четвертой стадии, когда продукты выветривания слагаются почти исключительно полуторными окислами, последние также подвергаются большому или меньшему перемещению»[8].
Табл. 3. Ряды миграции химических элементов в коре выветривания силикатных пород
В дальнейшем автор показал, что об интенсивности миграции химических элементов можно судить по отношению их содержания в минеральном остатке вод (речных, грунтовых, подземных) к содержанию в горных породах.
Это отношение — коэффициент водной миграции (