Биология в новом свете - страница 5
). Журчалки могут недвижно висеть на одном месте, а при малейшей опасности тотчас его менять. Они летят по прямой да так быстро, что мы даже не в состоянии проследить за ними глазами: мы лишь замечаем, что насекомое, только что бывшее здесь, уже находится в Другом месте и снова, точно вертолет, висит в воздухе.
Предположим, муха меняет свое местоположение всего за какую-нибудь десятую долю секунды, и за это время она пролетает около метра. Это значит, что ее скорость равна 10 м/с. (Вероятно, эта цифра несколько приуменьшена, но сейчас для нас это не существенно.) Следовательно, муха пролетает за секунду расстояние, в 1000 раз большее длины ее тела, которая составляет примерно 1 см.
А теперь представим себе самолет, длина корпуса которого, скажем, около 30 м. Если бы он мог покрыть за секунду расстояние, в 1000 раз превышающее эту длину, то его скорость должна была бы равняться 30 км/с, что в 100 раз больше скорости звука. В таком случае наш воображаемый самолет обогнал бы любую ракету. Но чтобы выдержать сравнение с мухой-журчалкой, он одновременно должен был бы обладать способностью неподвижно висеть в воздухе, подобно вертолету.
Этот пример еще поразительнее, чем сравнение былинки с телевизионной башней. Неужели действительно биологические системы настолько совершеннее технических? Уж не правы ли виталисты, говорящие о существовании некой "чудодейственной силы" (vis vitalis), которая присуща биологическим системам и непостижима для естественных наук?
Таких примеров сколько угодно. Читатель мог бы понаблюдать за проворной жужелицей и сравнить ее с автомобилем, подобно тому как мы сравнивали муху и самолет, или вспомнить водомерок, стремительно бегущих по поверхности пруда. Все эти сравнения удивительны. Как их понять?
Однако продолжим наши расчеты. Итак, муха пролетает за секунду расстояние, в 1000 раз большее длины ее тела. Поистине природа творит чудеса! А как быстро летают птицы? Способны ли они достичь такой же скорости?
Жужелица — один из самых проворных 'бегунов'. Сравнится ли с ней гоночный автомобиль, если сопоставить для них отношения скорости движения к длине (v/l)? Есть ли смысл в таком сравнении?
Один из самых быстрых наших "летунов" — ласточка. Длина ее тела около 10 см, следовательно, если использовать прежние соотношения, ее скорость должна быть 100 м/с, или 360 км/ч. Ласточка действительно летает очень быстро, но все же ее скорость по крайней мере в 4 раза меньше рассчитанного нами значения.
Что же тогда можно сказать о Скорости полета крупных птиц: лебедя, орла или аиста?
Если бы мы продолжили подобные сопоставления, то пришли бы к ошеломляющим результатам: слоны с огромной скоростью мчались бы по саваннам; кенгуру, соревнуясь с блохами, совершали бы километровые прыжки. А могли ли бы мы, подобно водомеркам, бежать по поверхности воды, если бы у нас было много ног? Конечно, нет! Мы должны признать, что простое сравнение, учитывающее только пропорции, себя не оправдывает. Почему? Ведь правило углов справедливо для треугольников любых размеров, и законы геометрии применимы как для расчета модели атома, так и для определения расстояния между Землей и Луной. Все это действительно так, но в науке следует остерегаться скороспелых обобщений.
Если природа творит чудеса, почему же слон не бежит быстрее? С какой скоростью он должен мчаться, чтобы отношение v/l было у него таким же, как у жужелицы. По-видимому, мы что-то не то сравниваем
Любая домашняя хозяйка по собственному опыту знает, что килограмм крупной картошки можно очистить быстрее, чем килограмм мелкой. Как известно из математики, поверхность шара увеличивается пропорционально квадрату его диаметра, а объем шара связан с диаметром кубической зависимостью, и потому в килограмме мелкой картошки кожуры больше, чем в килограмме крупной. Даже такой несложный геометрический пример показывает, что в расчетах не всегда можно исходить из простой пропорциональности. Инженерам это давно известно, и какой-нибудь сведущий в технике читатель уже на первом примере сморщил бы нос: "Телевизионную башню, тонкую как стебелек, я бы мог построить, но пусть она будет не выше травинки". Или: "Почему же в природе трава не вырастает до 200 м?" Последний вопрос заставляет о многом задуматься, и мы еще не раз к нему вернемся.