Биржевая игра - страница 12

стр.

не смог бы продолжать. Поэтому, уменьшая сумму риска при каждом подбрасывании, трейдер смог бы продержаться в игре.

Во-вторых, слишком большая ставка риска при каждой сделке может превратить выигрышную ситуацию в проигрышную. Даже если трейдер не полностью исчерпает свой счет (теоретически), уменьшение счета приведет к чистому убытку в размере 79% после 100 подбрасываний.

Бесконтрольное расходование торговых ресурсов может привести к серьезному проигрышу. Однако ни одна стратегия управления не обратит безнадежно проигрышную ситуацию в выигрышную.

>1 Slippage — оригинал.

>2 Ralph Vince.

>3 Здесь излагается трансформированное под решение конкретной проблемы и известное вот уже более двухсот пятидесяти лет как "петербургский парадокс" рассуждение Даниила Бернулли. Эта проблема имеет непосредственное отношение к современной финансовой теории, так как обсуждается проблема о том, сколько следует платить за обладание рисковым активом. Тесно смыкается с теорией ожидаемой полезности. (Прим, научного ред.).


СРАВНЕНИЕ ОТРИЦАТЕЛЬНОГО/ ПОЛОЖИТЕЛЬНОГО ОЖИДАНИЯ

В своей работе я редко привлекаю вероятностное прогнозирование и статистику, однако, планируя размещение торгового капитала, вы должны уметь прогнозировать ситуацию. Особенно это касается "положительного/отрицательного ожидания.

Проще говоря, распределяя капиталовложения, трейдер должен представлять себе перспективу положительного ожидания. Кроме того, он должен уметь рассчитывать размеры этого ожидания. "Положительное/отрицательное ожидание" можно определить как математически доказанную вероятность прибылей/убытков. Пример с монетой — это сценарий ожидания, основанный на следующих вычислениях:

Вероятность выигрышных сделок = 50%

Вероятность проигрышных сделок = 50%

Сумма каждого выигрыша = 2 доллара

Сумма каждого проигрыша = 1 доллар

Математическое выражение положительного ожидания будет следующим:

[1+(W/L)] х Р -1 (где Р — это вероятность выигрыша)

Поэтому предыдущий пример будет иметь следующее математическое ожидание:

(1+2) х 0,5–1 = 3x0,5–1 = 1,5–1 =0,5

Положительное ожидание определяется значением этого выражения, превышающим ноль. Чем больше это число/тем сильнее статистическое ожидание. Если значение меньше нуля, то математическое ожидание также будет отрицательным. Чем больше модуль отрицательного значения, тем хуже ситуация. Если результат равен нулю, то ожидание является безубыточным.

Трейдеры могут использовать математические формулы в двух ситуациях. Первая ситуация, когда все суммы выигрышей равны так же, как и суммы проигрышей. Однако суммы выигрышей могут отличаться от сумм проигрышей так же, как и между собой. Другой случай, когда формулы могут быть полезны, — подсчет средних выигрышей и проигрышей. Очевидно, что вероятностное выражение применяется к историческим данным о проигрышах и выигрышах и не может использоваться в прогнозировании. Есть выражение, которое позволяет оценить ситуацию, когда суммы выигрышей и проигрышей могут принимать бесконечные количественные значения. Это выражение бесполезно для целей торговли, поскольку оно применяется к историческим данным о выигрышах/проигрышах. Вероятностное значение соотношения выигравших ставок к проигравшим в любой конкретной системе (либо стратегии) является лишь оценочной величиной. А оценка при этом строится на статистических данных. Поэтому, прежде чем подставлять в выражение какие-либо данные, необходимо собрать статистику. В результате такого положения вещей мы будем использовать данное выражение и просто измерять силу и надежность статистических данных. При подбрасывании монет мы уже знаем вероятные в будущем варианты, которые существуют вне зависимости от прошлых исходов любого количества падений монеты. В реальном мире торговли мы не имеем подобной информации.

В следующем примере используем это уравнение для известных статистических данных. Для вероятности выигрыша в 63%, при средней сумме выигрышной сделки в 454 доллара, а проигрышной сделки в 458 долларов математическое ожидание будет следующим:

[l+(W/L)]xP-l =[1+(454/458)]х0,63-1 =1,99x0,63 — 1 =0,2537