Цифровой журнал «Компьютерра» № 133 - страница 11

стр.

). В типичном случае каждая родительская клетка имеет пару гомологичных (соответствующих друг другу) генов — один от матери, другой от отца. Какой из них при мейозе попадет в конкретную половую клетку — дело случая. Обычно такая вероятность очень близка к 50 процентам. Но некоторые гены способны нарушать равновесное распределение и преимущественно попадать в половые клетки. Такое нарушение называется мейотическим дрейфом (или мейотическим драйвом).

Так вот, отбор благоприятствует генам мейотического дрейфа. В отсутствие компенсирующих его эффектов гены дрейфа будут размножаться в популяции всё больше и больше — даже если это не приносит их обладателям никакой выгоды. Иногда это может даже привести к вымиранию популяции! Раз так, отбор в отношении других генов будет способствовать таким их эффектам, которые могли бы заблокировать мейотический дрейф.

Приведу пример. У стебельчатоглазых мух распространён ген мейотического дрейфа, который приводит к тому, что у самцов в половые клетки преимущественно попадает женская половая хромосома, X-хромосома (у этих мух тот же механизм определения пола, что у людей). Половых клеток с Y-хромосомой меньше, и потомство таких самцов состоит преимущественно из самок. Если бы гены мейотического дрейфа добились полной победы, самцы бы исчезли совсем. Но у них есть гены, которые, во-первых, могут сдерживать мейотический дрейф и, во-вторых, вызывают удлинение стебельков, на которых сидят глаза (подробнее в заметке Я.Р. Галимова здесь).

Знаете, чему удивляется эта стебельчатоглазая муха (Teleopsis dalmanni)? Мейотическому дрейфу!


В потомстве «длинностебельковых» самцов оказывается относительно больше новых самцов. Для популяции с избытком самок это выгодно. Поэтому половой отбор начинает поддерживать самок, предпочитающих «длинностебельковых» самцов. В результате устанавливается равновесие. Длину стебельков в популяции увеличивает половой отбор (предпочтения самок) и повышение доли недостающих самцов в потомстве «длинностебельковых» особей. Обратный эффект оказывает повышение смертности уродцев с глазами, разнесёнными по сторонам...

Пример феномена из второй группы — сам мейоз. С точки зрения эгоистичного гена невозможно понять широкое распространение способа размножения, при котором потомство получает не все гены родителя (репликаторы, по Докинзу), а лишь их случайную половину. Цитирую Докинза («Расширенный фенотип»):

"При бесполом размножении ставки равные и максимальные: у всех репликаторов одни и те же стопроцентные шансы очутиться в каждом из произведённых совместными усилиями потомков. Если же размножение половое, то шансы каждого репликатора вдвое скромнее, однако куртуазный обряд, именуемый мейозом, — «гавот» Гамильтона довольно эффективно обеспечивает всем аллелям равенство возможностей в получении прибыли от совместного репродуктивного предприятия. Другой вопрос, разумеется, в том, почему гавот хромосом столь аристократически учтив. Вопрос чрезвычайной важности, но я трусливо уклонюсь от него. Это один из тех вопросов об эволюции генетических систем, над которыми и более светлые умы бились без особого успеха , один из тех вопросов, которые побудили Уильямса написать, что «в эволюционной биологии намечается нечто вроде кризиса». Я не знаю, почему мейоз таков, каков он есть…".

Зато на языке воспроизводства особей можно объяснить пользу от полового размножения с мейозом. Чтобы не зарываться в непростую тему, сошлюсь на два примера: статьи Александра Маркова (2009) и Елены Наймарк (2011). Подчеркну, что описанные в этих экспериментах опыты доказали именно пользу полового размножения с мейозом, а не раздельнополости как таковой. Гермафродиты с перекрёстным оплодотворением были бы в описанных ситуациях не менее успешны.

Ой, как стремительно исчерпывается разумно допустимый объём колонки! А знаете, ради чего я рассказывал о том, что в неё поместилось? Ради «подводки» к обсуждению многоуровневого отбора у зелёных лягушек. Что же, в этот раз не судьба...


К оглавлению

Дмитрий Вибе: Забвение и триумф радиокосмоса