Цифровой журнал «Компьютерра» № 213 - страница 16

стр.

Гаметы встречаются в толще воды, сливаются и образуют зиготу. С вероятностью в 50% особь принадлежит к первому или второму типу. Она будет производить такие же по размеру гаметы, которые производил её родитель, относящийся к её типу скрещивания, с небольшим уточнением. С небольшой вероятностью d (в показанном примере d=0,005) особь переходит к производству гамет соседнего размерного класса: в 2 раза крупнее или в 2 раза мельче. Все особи вкладывают в производство гамет одно и то же количество энергии, и поэтому те особи, которые производят вдвое более мелкие гаметы, выбросят в воду в 2 раза большее их количество.

Последнее, что нужно пояснить перед обсуждением результатов, — то, что вероятность выживания зигот зависит от количества энергии, полученной ими от гамет (попросту от размера). Самый простой вариант зависимости — прямая пропорциональность размера зиготы и её шансов на выживание. Посмотрим, что получится.


>Окно с коротким описанием модели, ячейками для ввода начальных параметров и итоговым графиком её работы. Гаметы первого пола показаны сплошной линией, второго — прерывистой. Выживаемость зигот прямо пропорциональна запасу их энергии. В начальном состоянии оба типа организмов производят гаметы в 12,5% от максимального; к концу имитации первый тип производит исключительно гаметы размером в 1,6%, а второй — в основном в 6,3% от максимального.

Оба «пола» уменьшают размеры своих гамет. Почему — легко понять. При постоянстве размера половых клеток партнёра та особь, которая уменьшит свои гаметы вдвое, вдвое же увеличит количество своих потомков, а их выживаемость сократится только на 75% (запас энергии зиготы зависит от размера обеих гамет). В этой ситуации оба «пола» сокращают размер своих половых клеток. Это происходит до предела, при котором выживаемость зигот становится угрожающе низкой.

Реалистичны ли использованные мной условия? Не вполне. Вероятно, зигота, которая мельче некоего минимального размера, вообще не имеет шансов на выживание. Жизнеспособность зиготы в таком случае должна быть пропорциональна разнице между её размером и этим минимумом.


>Два варианта зависимости шансов на выживание зиготы от её размера (обусловленного размером гамет).

Стоит перейти с первого варианта зависимости шансов на выживание зиготы ко второму, поведение модели кардинально меняется. Увеличение размеров гамет тоже оказывается выгодной стратегией (приглядитесь: события на картинке внизу начинаются с того, что «пол», показанный пунктиром, переходит к производству более крупных половых клеток).


>Здесь реализован второй вариант зависимости шансов на выживание зиготы от её размера. В начале имитации оба пола производят гаметы в 12,5% от максимального; к концу (через 128 поколений) первый пол даёт почти исключительно гаметы в 0,8%, а второй — в 100% от максимального размера.

При этих условиях модель быстро переходит к состоянию, где один пол производит самые крупные из возможных гамет, а второй — самые мелкие. Какой именно пол окажется «крупногаметным», а какой — «мелкогаметным», решает случай.

Как видите, в нашей модели мы наблюдали переход от изогамии к анизогамии.

Как я уже сказал, для изучения этого перехода разработаны весьма изощрённые модели, которые учитывают и иные факторы. Например, очевидно, что вероятность встречи гамет зависит от эффективности их плавания, которая, в свою очередь, зависит от их размеров (в частности, влияющих на число Рейнольдса — величину, определяющую характер движения обтекающей гамету жидкости). Учёт таких факторов приводит к более сложным зависимостям, которые, тем не менее, подтверждают общую закономерность: изогамия относительно неустойчива и с большой вероятностью вытесняется анизогамией.


>Трёхмерная визуализация результатов намного более сложного моделирования. Высота пиков отражает устойчивость различных сочетаний размеров гамет. Изогамии соответствует небольшой пик посредине, а анизогамии — два симметрично расположенных более высоких пика по краям (из книги: T. Togashi and P.A. Cox (editors). The Evolution of Anisogamy. Cambridge University Press, 2011, 250 p.).