Дифференциальная психология. Индивидуальные и групповые различия в поведении - страница 15
Таблица 1 Частотное распределение данных 1000 студентов колледжа, тестирование умения применять код. (Данные из Анастази, 2, с. 34.)
Рис. 2. График распределения: полигон частот и гистограмма. (Данные из таблицы 1.)
Мы можем продолжить описание группы, определив ее центральную тенденцию. Если мы захотим получить наиболее типичное значение, которое характеризовало бы группу в целом, то необходимо определение главной тенденции. Одним из наиболее известных способов является вычисление средней величины, получаемой при сложении всех показателей и делении полученной суммы на число случаев. Такая величина называется средним арифметическим.
Другим способом определения главной тенденции, часто используемым в психологии, является медианный. Если все результирующие значения расположить по порядку в соответствии со своей величиной, то медианой будет результат, расположенный ровно посередине ряда. Для больших групп гораздо легче вычислить медиану непосредственно на основе частотного распределения. В этом случае медианная точка разделяет распределяемое множество таким образом, что половина случаев будет находиться выше нее, а другая половина — ниже. Еще одним способом измерения главной тенденции, иногда встречающимся в психологических исследованиях, является определение моды, или наиболее часто встречающегося показателя. Его так же можно найти на основе частотного распределения, выявив ту точку интервала, которая имеет самую большую частоту. Заметим, что мода соответствует самой высокой точке графика. Для распределения, данного в таблице 1 и на рисунке 2, среднеарифметическое значение составляет 32,37, медианное — 32,46 и значение моды — 33,5.
Читатель наверняка уже обратил внимание на особенности распределения, представленного в таблице 1 и на рисунке 2. Большинство случаев расположены в центре ряда, а приближаясь к крайним значениям, происходит долгий плавный спад. На графике нет разрывов — нет классов, которые были бы отделены друг от друга. Кроме этого, график по обе стороны симметричен; это означает, что если его разделить вертикальной линией по центру, то получившиеся две половинки окажутся примерно одинаковыми. Такой график распределения своей формой похож на колокол, это так называемое «нормальное распределение», которое чаще всего встречается при измерениях индивидуальных различий. В своем идеальном виде нормальное распределение изображено на рисунке 3.
Понятие нормального распределения в статистике используется уже давно. Вероятность какого-либо события представляет собой частоту его наступления, зафиксированного очень большим количеством наблюдений. Эта вероятность представляет собой определенное соотношение, точнее, дробь, числителем которой является ожидаемый результат, а знаменателем — все возможные результаты. Таким образом, вероятность, или шансы, того, что две монеты выпадут одной и той же стороной, например решкой, будет один к четырем, или >1/>4. Это следует из того факта, что существует всего четыре возможные комбинации выпадения монет РР, РО, ОР, ОО, где Р — решка, а О — орел. Одна из четырех, РР, означает выпадение только решек. Вероятность выпадения двух орлов будет также составлять >1/>4, а вероятность выпадения решки какой-либо одной монеты при выпадении орла другой составит один к двум, или >1/>2. Даже если число монет увеличить, скажем, до 100, и количество возможных комбинаций станет очень большим, то мы по-прежнему сможем математически определить вероятность возникновения каждой комбинации, например, выпадения всех решек или 20 решек и 80 орлов. Эти вероятности, или ожидаемую частоту выпадений, можно изобразить графически описанным выше методом. Если число монет будет очень велико, то построенный график окажется колокольной формы, то есть графиком нормального распределения.
0 1 2 3 4 5 6 Количество выпадений решек
Рис. 4. Теоретическое (пунктир, линия) и фактически наблюдаемое (сплошная линия) распределение количества выпадений решек в 128 случаях подбрасывания шести монет. (Данные из Гилфорда, 10, с. 119.)