Дилемма заключенного и доминантные стратегии. Теория игр - страница 8
>2 =а>n-1 · а>n+1+(-1)>n+1. Таким образом, взяв квадрат со стороной, равной одному из чисел Фибоначчи, и прямоугольник, стороны которого равны предыдущему и последующему числам Фибоначчи, мы снова получим такой же парадокс. Этот парадокс разрешим, и подобное построение можно выполнить корректно для числа Ф, описывающего золотое сечение, которое тесно связано с числами Фибоначчи: взяв квадрат со стороной Ф и разделив его на четыре части, получим прямоугольник со сторонами 1 и Ф + 1. Площадь квадрата (Ф>2) будет точно равна площади прямоугольника 1 · (Ф + 1).
Парадокс Хупера гласит, что из двух треугольников и двух трапеций, образующих квадрат, можно составить прямоугольник большей площади.
Игры и занимательная математика в XIX и XX веках
Игры и занимательная математика непрерывно развивались в течение XIX и начала XX веков, и спектр задач неуклонно расширялся. Среди авторов XIX века следует упомянуть Джеймса Джозефа Сильвестра (1814—1897), Льюиса Кэрролла (1832—1898), Эдуарда Люка (1842—1891) и Уильяма Роуза Болла (1850—1925). Рассказать обо всех подробно просто невозможно, и далее мы остановимся на книгах Кэрролла и Люка.
Преподобный Чарльз Латуидж Доджсон, известный как Льюис Кэрролл, автор сказок об Алисе, был математиком и профессором Оксфорда. Он обожал занимательную математику и планировал издать серию книг под названием Curiosa Mathematica («Математические курьезы»). Завершить этот труд ему не удалось. Во второй книге этой серии под названием «Полуночные задачи, придуманные в часы бессонницы» он демонстрирует выдающиеся способности, приводя решения как простейших и шутливых («Есть двое часов. Одни стоят, другие опаздывают на одну минуту. Какие часы показывают время точнее?»), так и довольно сложных задач («Даны три произвольные точки на бесконечной плоскости. Какова вероятность того, что они образуют тупоугольный треугольник?»).
Знаменитый автор «Алисы в стране чудес»Льюис Кэрролл также придумал бесчисленное множество математических игр.
Кэрролл был не только гениальным автором математических и логических игр, но и великим знатоком английского языка, что можно увидеть в его книгах об Алисе и в многочисленных придуманных им играх со словами. Одна из них, «Лестница слов», заключается в том, что нужно построить цепочку из слов с одинаковым количеством букв, каждый раз меняя по одной букве в слове. Например, можно превратить козу в волка: КОЗА — ПОЗА — ПОЛА — ПОЛК — ВОЛК.
Наиболее значимая роль в развитии математических игр принадлежит французскому математику Эдуарду Люка, специалисту по теории чисел и в особенности по числам Фибоначчи. Он является автором великолепного сборника Recreations mathematiques («Математические развлечения»). Эта книга содержит 35 разделов, посвященных математическому анализу игр и занимательным задачам. Среди игр, придуманных Люка, выделяются «Ханойские башни». Сам Люка, чтобы создать завесу тайны, на презентации игры в 1883 году приписал ее авторство китайскому профессору Клаусу (Claus) из колледжа Ли-Су-Стьян (Li Sou Stain). Обратите внимание, что имя несуществующего профессора — анаграмма фамилии самого Люка (Lucas), а название колледжа — анаграмма колледжа Сен-Луи (Saint Louis), где Люка преподавал математику.
Одна из последних книг XIX века по занимательной математике — Mathematical Recreations and Essays («Математические эссе и развлечения», 1892) Уолтера Роуза Болла, которая в XX веке стала одной из популярнейших книг по этой теме, выдержав более 12 изданий. Редактором одного из изданий в 1938 году выступил геометр Гарольд Коксетер.
Начальное положение колец в игре «Ханойские башни».
Одна из игр, о которых пишет Эдуард Люка в третьем томе своей книги о занимательной математике, принадлежит к типу игр, в которых нужно окружить своими фишками фишки другого игрока. К таким играм относятся «Охота на зайца» из книги Альфонсо X Мудрого и «Лиса и гуси» — очень популярная в викторианской Англии игра, известная еще с XV века.
В «военных играх» отсутствует элемент случайности. Эта игра рассчитана на двух игроков и была очень популярной среди французских военных в XIX веке. У одного игрока три белых фишки, у другого (ему принадлежит первый ход) — одна черная фишка. Фишки располагаются на доске из 11 клеток (начальное положение фишек показано на рисунке ниже). Задача белых фишек — окружить черную, которая пытается сбежать. Фишки могут перемещаться по пустым клеткам вдоль линий игрового поля, но белые фишки не могут отступать, в то время как черная может двигаться в любом направлении.