Дмитрий Иванович Менделеев - страница 19
Современная наука решает проблему химического сродства, пользуясь новыми мощными методами изучения явлений, происходящих внутри атома. Это было сделано значительно позже появления работ Менделеева, посвященных периодическому закону, и в значительной степени — на основе этого закона. После того как Менделеев, открыв периодический закон, показал связь различных элементов друг с другом, после того как было выяснено внутреннее строение атомов и явления, происходящие внутри атомов, наука смогла разъяснить природу химического сродства и валентности, т. е. способности атома присоединять к себе совершенно определенное число других атомов.
В 1860 году Менделеев еще не мог проникнуть в этот внутриатомный мир и найти причины химического сродства и валентности. Но его работы, посвященные молекулярному сцеплению, привели к крупному физическому открытию. Чтобы измерить силы молекулярного сцепления и выяснить, от чего зависит связь частиц жидкости, Менделеев пользовался тонкими капиллярными трубками, погруженными в жидкость. По таким трубкам жидкость, смачивающая их стенки, как известно, поднимается вверх. Сцепление частиц служит причиной такого подъема. Чем сильнее сцепление, тем выше поднимается жидкость. Таким образом столбик поднявшейся по капиллярной трубке жидкости измеряет силы молекулярного сцепления.
Менделеев изучал, как изменяется высота столбика, иначе говоря, как изменяются силы молекулярного сцепления в зависимости от температуры жидкости. Он нагревал жидкость, при этом молекулы жидкости начинали быстрее двигаться, связь между ними уменьшалась, и столбик в капиллярной трубке соответственно становился меньше. При определенной температуре сцепление частиц жидкости исчезало, жидкость превращалась в пар, в котором молекулы находятся в таком быстром движении, что взаимное притяжение не удерживает их друг около друга. Температуру, при которой даже при очень высоком давлении исчезают силы сцепления между молекулами жидкости, Менделеев назвал абсолютной температурой кипения жидкости. Ныне подобная температура называется критической. Когда тело нагрето выше этой температуры, всякая жидкость независимо от давления превращается в пар. В свою очередь всякий газ при охлаждении, достигая этой температуры, может быть превращен в жидкость.
Таким образом, при определенных условиях каждую жидкость можно превратить в газ и каждый газ — в жидкость. Однако такое превращение происходит, когда температура повышается (либо понижается) до абсолютной температуры кипения. Фарадей и другие физики и химики XIX века пытались, применяя высокие давления, сжать различные газы и превратить их в жидкости и во многих случаях достигали успеха. Однако, работая с некоторыми газами, они не могли достичь этой цели, и таким образом возникло ошибочное представление о «постоянных газах»: кислороде, водороде, азоте. Менделеев разъяснил, что такие газы нельзя было превратить в жидкость потому, что температура оставалась выше абсолютной температуры кипения, т. е., говоря современным языком, — выше критической температуры. Открытие Менделеева дало громадный толчок физике газов. В 70-е годы Л. Кайете и Р. Пикте удалось охладить воздух до температуры -184 °C и получить жидкий воздух. Несколько раньше ученые получили жидкую углекислоту. В конце XIX века удалось превратить в жидкость водород, а в начале нашего столетия Каммерлинг-Оннес получил в виде жидкости последний из «постоянных газов» — гелий. В дальнейшем стала развиваться во многих направлениях важная в практическом и теоретическом отношении отрасль физики — физика низких температур. В Советском Союзе работает несколько крупных лабораторий, в которых, в частности, исследуются замечательные свойства различных веществ при низких температурах вблизи температуры абсолютного нуля (-273°,13 по обычной шкале Цельсия).
Менделеев впоследствии не раз возвращался к вопросу о поведении газов и жидкостей и к разработке учения о молекулах, их движении, взаимном тяготении и отталкивании. Итогом длительных экспериментальных и теоретических исследований была работа Менделеева об упругости газов. Именно эта работа и привела Менделеева к метеорологическим исследованиям и разработке научных основ воздухоплавания, конструированию стратостата и автоматических записывающих приборов, которые можно было поднимать в атмосферу без наблюдателя.