Эксперимент, теория, практика - страница 14

стр.

Таким образом, нам удалось наблюдать теплопередачу, которая была по крайней мере еще в 20 раз больше, чем наблюденная Кеезом. Следовательно, конвекционная скорость, необходимая для объяснения этой теплопроводности, должна составлять уже не 50, а порядка 1000 м/сек. Очевидно, что существование таких скоростей в конвекционных потоках допустить нельзя. Немыслимо предположить, что гелий в капилляре двигается со скоростью, которая превышает скорость полета пули. Можно было показать, что отсутствуют источники энергии для таких мощных конвекционных потоков.

Полученные нами результаты, оказывается, вели к еще более фундаментальным затруднениям, чем это кажется на первый взгляд, если механизм теплопередачи путем конвекции отпадал. Если мы вспомним тот обычный механизм теплопроводности, который мы описывали раньше как передачу теплового движения от одних атомов к другим, можно показать, что и в этом случае мы наталкиваемся на основное противоречие.

Вернемся на время к этой картине теплопроводности. Положим, у нас имеется слой атомов, который внезапно нагрет, и атомы в нем колеблются более интенсивно, чем в соседних. Эти колебания будут передаваться от одного слоя к другому, и, таким образом, мы получим тепловую волну, распространяющуюся по телу от нагретого места. Показано, что распространение подобной тепловой волны не может быть скорее распространения в теле упругих колебаний, т. е. звука. Скорость звука в гелии-II изучена и найдена равной 230 м/сек, в то время как скорости, которые мы получили от тепловых измерений, как оказалось, в несколько раз превосходят ее, что противоречит условиям такого способа теплопередачи. НА поиски выхода из этих противоречий мы затратили около года.

Как же дальше искать механизм этой теплопередачи, не имея никакой руководящей идеи? Ведь наши результаты в основном противоречили всем известным теоретическим представлениям?

Тут пришлось идти ощупью, пробовать самые разнообразные физические факторы, под влиянием которых, может быть, будет меняться теплопроводность. Мы испробовали влияние на теплопередачу в гелии-II давления, силы тяжести, времени и т. д. Результаты получились отрицательные — теплопроводность не изменялась, оставаясь такой же большой.

Наконец, одно совершенно случайное наблюдение дало нам сразу новое направление в работе. Оказалось, что пульсации давления, совершенно случайно передаваемые из лабораторной сети гелиевого трубопровода на гелий в капилляре, сильно изменяли его теплопроводность. Хотя пульсации были очень малы, но они уменьшали теплопроводность гелия-II в десятки раз. Возникает вопрос — как эти небольшие пульсации давления могут так сильно влиять на теплопроводность гелия?

Наиболее естественное объяснение было следующее. Известно, что жидкий гелий-II — сравнительно легко сжимаемая жидкость — примерно в сто раз легче, чем вода. Благодаря этому свойству пульсации давления, сжимая жидкость, могли вызывать потоки гелия в капилляре, где изучалась его теплопроводность. Мы и предположили, что эти потоки влияют на теплопроводность. Чтобы проверить правильность этого объяснения, надо было поставить опыты, где измерялась теплопроводность гелия, когда он протекает через капилляр. Когда это было сделано, то оказалось, что действительно в гелии-II, текущем в капилляре, теплопроводность уменьшена в 100 и даже в 1000 раз. Эти эксперименты также обнаружили, что пока через гелий в капилляре течет тепло, то он легко протекает. Этим была установлена связь между потоками жидкого гелия и его способностью переносить тепло, и это явилось ключом к дальнейшим исследованиям.

Действительно, если потоки гелия влияют на теплопроводность, то возможно, что и передача тепла вызывает потоки. Сразу возник вопрос — как экспериментально обнаружить потоки гелия в тонком капилляре, диаметр которого был только 0,5 мм? Это задача трудная, но можно было ожидать, что эти потоки могли прорываться наружу у свободного конца капилляра, и там их можно было обнаружить. Для этой цели был построен приборчик, который схематически изображен на рисунке на стр. 31.