Этюды по истории поведения - страница 58
«Подстановка кусочков бумаги, — замечает Леви-Брюль, — вместо пальцев рук и ног особенно замечательна. Она нам показывает совершенно чистый случай еще вполне „конкретной абстракции“, которая свойственна дологической мысли». И в самом деле, трудно представить пример, более разительно показывающий существеннейшую разницу между запоминанием человека и между запоминанием животного. Примитивный человек, стоящий перед задачей, превосходящей естественные силы его памяти, прибегает к бумаге, прибегает к пальцам, к созданию внешних знаков.
Он пытается воздействовать на свою память извне. Внутренние процессы запоминания он организует извне, заменяя внутренние операции внешней деятельностью, которая наиболее легко поддается его власти. Организуя эту внешнюю деятельность, он овладевает своей памятью при помощи знаков. В этом сказывается существенное отличие человеческой памяти от памяти животного. Вместе с тем этот пример показывает, насколько тесно операции счета связаны у примитивного человека с операциями памяти.
Рот спросил примитива, сколько пальцев у него на руках и ногах, и попросил отмечать число их линиями на песке. Тот начал сгибать по два пальца и для каждой пары проводил двойную черту на песке. Подобный способ употребляют старшины племен, для того чтобы сосчитать людей. В этом мы видим косвенный инструментальный путь, для того чтобы при помощи знаков составить себе представление о количестве. Переход от натуральной арифметики, основанной на непосредственном восприятии количеств, к опосредованной операции, совершающейся при помощи знаков, как видим, встречается уже на самых первых ступенях культурного развития человека.
Этот счет при помощи частей тела, эта конкретная нумерация постепенно становится полуабстрактной-полуконкретной и составляет первую ступень нашей арифметики. «Нельзя сказать, — говорит Хедон, — что „набигет“ — это имя числа пять. Оно означает только, что предметов есть столько, сколько есть пальцев на руке». В основе такого счета лежит, следовательно, молчаливое образное или картинное сравнение, мануальное или — по выражению этого автора — визуальное понятие, без которого развитие примитивных числовых операций было бы непонятно.
Это образное происхождение числовых обозначений обнаруживается в том, что примитив имеет тенденцию считать не по единице, а группами самыми различными, например двойками, четверками, пятерками и т. д. Вот почему, располагая часто небольшим количеством числительных, исчерпываемых этой группой, этот человек все же может считать чрезвычайно большие количества, повторяя одни и те же числительные по нескольку раз.
На тот же конкретный характер указывают существующие у многих примитивных племен различные системы счета для различных предметов, например для предметов плоских и для круглых, для животных и для людей, для времени, для длинных предметов и т. д. Различные предметы требуют и различного счета. Так, например, в языке микир существуют отдельные системы счета для людей, животных, деревьев, домов, плоских и круглых предметов, частей тела. Числительное всегда есть чисто определенного предмета.
Остатки этого мы видим в сохранившихся еще у нас различных способах счета, применяемых к различным предметам. Карандаши, например, до сих пор считаются на дюжины и гроссы и т. д. Замечательны в этом отношении и те вспомогательные слова, которые употребляются многими примитивными народами при счете. Эти вспомогательные слова имеют задачей сделать наглядными и как бы видимыми последовательные стадии арифметической операции. Когда, например, на подобном языке говорят «21 фрукт», это буквально звучит так: сверх 20 фруктов я кладу 1 на самой верхушке; когда говорят «26 фруктов», это значит: сверх двух групп по 10 фруктов я кладу наверху 6.
Здесь, говорит Леви-Брюль, мы видим ту же живописующую арифметику — черту, которую мы видели в общей структуре языка.
Как бы ни казалось парадоксальным это, заключение, говорит он, оно между тем истинно: в данных обществах человек считал в течение долгих веков, еще не имея чисел. Было бы ошибкой представлять, что человеческий ум построил числа для того, чтобы считать, в то время как, наоборот, люди начали считать, прежде чем сумели создать числа.