Ферми. Ядерная энергия - страница 15

стр.


Английские астрономы могут стать американскими сенаторами, но реками — никогда.

Энрико Ферми о своем эпистемологическом видении


Ферми был очарован успехами статистической физики в объяснении квантового мира. Поэтому он решил использовать тот же метод, который он применил для статистики одноатомного газа, для подсчета эффективного потенциала, действующего на электроны. Он рассмотрел частицы как газ из фермионов при абсолютном нуле, которые поддерживают вокруг ядра электрическое притяжение.

В статье «Статистический метод определения некоторых свойств атома» Ферми изложил модель, известную сегодня как атомная модель Томаса — Ферми, поскольку Люэлин Хиллет Томас предложил похожую модель годом раньше, хотя Ферми ничего не знал о его работе. Согласно модели Томаса — Ферми облако электронов не падает на ядро, что должно было бы произойти из-за электромагнитного притяжения с протонами, имеющими противоположный заряд, потому что принцип исключения Паули ограничивает количество электронов на разных уровнях. Электроны ведут себя как идеальный газ Ферми, то есть как совокупность фермионов, не притягивающихся друг к другу и подчиняющихся принципу исключения. Эта простая модель хорошо работала для свободных электронов в металлах. Например, она объясняла их хорошую электрическую проводимость, а также, как продемонстрировал в 1930 году индийский физик Чандрасекар, поведение белых карликов, которые не коллапсируют, если их масса не превышает определенного верхнего предела.

Совокупность энергии Ферми-газа при абсолютном нуле больше суммы энергий фундаментальных состояний отдельных частиц. Это объясняется тем, что принцип Паули действует как давление, удерживающее фермионы отдельно друг от друга и в движении. Поэтому давление Ферми-газа ничтожно и при абсолютном нуле: давлением Ферми, или давлением вырождения, называют давление, которое стабилизирует звезды, и только в том случае, если звезда обладает достаточной массой для преодоления давления Ферми, она может провалиться в гравитационную сингулярность, или в черную дыру.

Наконец, модель Томаса — Ферми дала хорошее описание атомной плотности и объяснила, почему размеры каждого материального элемента являются следствием равновесия между внешними силами (электромагнитными или гравитационными, в зависимости от того, рассматриваются квантовые или астрономические явления) и давлением Ферми. В XX веке атомно-статистические теории Ферми успешно применялись также в науке о материалах.


СВОБОДНЫЕ ЭЛЕКТРОНЫ МЕТАЛЛА

В Ферми-газе как системе свободных фермионов частицы не взаимодействуют друг с другом, в отличие от Ферми-жидкости. В зависимости от того, как протоны и электроны описаны статистикой Ферми, можно сделать первые приблизительные выводы с помощью этой модели газа Ферми. Нельзя забывать, что когда была предложена модель Томаса — Ферми, нейтрон еще не был открыт, так что точность расчетов Ферми вызывает удивление.


ПОВЕРХНОСТЬ И СКОРОСТЬ ФЕРМИ

Энергия последнего заполненного электронами уровня (или уровня Ферми, n>F) описывается следующим выражением:

ε>F = h>2n>2>F/8mL>2 = h>2/8m·(N/2L)>2,

где N — количество электронов, m — масса электрона, h — постоянная Планка, N/L — электронная плотность газа, которая зависит от L, глубины потенциальной ямы, считающейся в данном случае одномерной (краевая задача). Определим волновой вектор Ферми:

k>F = 2πn>F/L.

В идеальном случае со сферой с радиусом k>F поверхность Ферми будет определена как поверхность, отделяющая населенные уровни от пустых в пространстве импульсов (см. рисунок). Энергию Ферми можно записать в зависимости от k>F в данном случае

ε>F = h>2k>2>F/8πm.

Определение скорости Ферми (v>F) следующее: это скорость, с которой фермион двигается на поверхности Ферми:

v>F = √(2ε>F/m) = hk>F/2πm.

Эти параметры характеризуют электроны, населяющие последний энергетический уровень в металлах (уровень Ферми). Зная их, можно подсчитать, когда они перейдут в зону проводимости. Это позволило развиваться полупроводникам и современной электронике.



Распределение энергии фермионов в Ферми-газе устанавливается посредством плотности, температуры и совокупности свободных энергетических уровней, следуя статистике Ферми — Дирака, как мы видели в предыдущей статье.