Фотоны и ядра - страница 22

стр.

Представим себе, что на испытуемой пластинке имеется впадина или бугор. Тогда линии равной толщины искривятся и будут обходить дефектное место. При изменении угла падения света полосы движутся в ту или другую сторону в зависимости от того, бугром или впадиной является дефект. На рис. 2.6 показано, как выглядит поле микроскопа в этих случаях. Оба рисунка соответствуют дефектным образцам. У первого дефект расположен справа у самого края, а у второго — слева.




Точные измерения показателей преломления вещества могут быть проделаны при помощи интерференционных рефрактометров. В этих приборах наблюдается интерференция между двумя лучами, которые по возможности отдалены друг, от друга.

Положим, что на пути одного из лучей установлено тело длиной l и с показателем преломления n. Если показатель преломления среды есть n>0, то оптическая разность хода изменится на Δ = l∙(nn>0). Два луча сводят в одну, точку при помощи фокусирующей линзы. Какую же картину будем мы наблюдать в зрительной трубе? Систему светлых и темных полос. Но это не полосы равной толщины, которые видны невооруженным глазом. Система полос, возникающая, в рефрактометре, имеет другое происхождение. Ведь исходный пучок света не идеально параллельному, а слегка расходящийся. Значит, падать на пластинку лучи, составляющие конус, будут под слегка разными углами.

Интерференционные события будут проходить одинаково у лучей одинакового наклона. Они и соберутся в одном месте фокальной плоскости зрительной трубы. Если разность хода между расщепленными частями пучка будет меняться, то полосы придут в движение. При изменении разности хода на величину Δ через окуляр трубы пройдут Δ/λ, полос.

Точность метода очень велика, ибо смещение в 0,1 полосы улавливается без труда. При таком смещении Δ = 0,1∙λ = 0,5∙10>-5 см, что на длине l = 10 см позволит зафиксировать изменение показателя преломления на 0,5∙10>-6.

Необходимо рассказать теперь об интерферометре другого типа, не использующего явление преломления. Это интерферометр, созданный американским физиком Альбертом Майкельсоном (1852–1931). Трудно переоценить ту роль, которую он сыграл в истории физики (я рискну даже на более сильное утверждение: в истории человеческой мысли). С помощью этого интерферометра был впервые установлен факт исключительной важности: скорость света в направлениях вдоль и поперек земной орбиты одинакова. Это значит, что скорость света не складывается со скоростью движения лампы, дающей световую вспышку, по тем правилам, по которым складывается скорость пули со скоростью сдвижения стрелка с ружьем. Открытие этого замечательного факта привело к становлению теории относительности, к коренному пересмотру смысла основных научных понятий — длины, времени, массы, энергии. Но об этом речь у нас впереди. А об интерферометре Мендельсона нам стоит поговорить сейчас, так как его значимость определяется не только местом, занимаемым в истории физики, но и тем, что до сего времени простые принципы, лежащие в основе его конструкции, используются для измерения длин и расстояний.

В этом приборе параллельный пучок монохроматического света падает на плоскопараллельную пластинку P>1 (рис. 2.7), покрытую со штрихованной стороны полу прозрачным слоем серебра. Эта пластинка поставлена под углом 45° к падающему от источника лучу и делит его на два, один из которых идет параллельно падающему лучу (к зеркалу M>1), а другой — перпендикулярно (к зеркалу М>2).



Разделенные лучи падают на оба зеркала перпендикулярно и возвращаются в те самые места полупрозрачной пластинки, из которых они вышли. Каждый луч, вернувшийся от зеркала, повторно расщепляется на пластинке. Часть света возвращается в источник, а другая часть поступает в зрительную трубу. На рисунке видно, что луч, идущий от зеркала, стоящего напротив трубы, три раза проходит через стеклянную пластинку с полупрозрачным слоем. Поэтому для обеспечения равенства оптических путей луч, идущий от зеркала М>1, пропускается через компенсационную пластинку P>2, идентичную первой, но без полупрозрачного слоя.

В поле зрения трубы будут наблюдаться круговые кольца, соответствующие интерференции в воздушном слое (толщина которого равна разности расстояний зеркал от места расщепления лучей) первичных лучей, образующих конус. Перемещение одного из зеркал (например, зеркала