Фотоны и ядра - страница 25
/>610>-5 м>2 дает в направлении, перпендикулярном поверхности, силу света, равную одной канделе.
На достаточно больших расстояниях, источник света представляется точкой. Именно в этих случаях и удобно измерять силу света. Построим около точечного источника сферу, выделим на этой поверхности участок площадью S. Поделив S на квадрат расстояния от центра, мы получим так называемый телесный угол. Единицей телесного угла является стерадиан. Если на сфере радиусом один метр вырезается площадка S = 1 м>2, то телесный угол равен одному стерадиану.
Световым потоком называют силу света точечного источника, умноженную на величину телесного угла.
Пусть вас не смущает то обстоятельство, что световой поток обращается в нуль, когда речь идет о параллельных лучах. В подобных случаях понятием светового потока не пользуются.
За единицу светового потока принимается люмен, равный потоку, который посылает точечный источник с силой света в одну канделу в угол, равный одному стерадиану. Суммарный световой поток, излучаемый точкой во все стороны, будет равняться 4π лм.
Сила света характеризует источник света вне зависимости от его поверхности. В то же время совершенно ясно, что впечатление будет различным в зависимости от протяженности источника. Поэтому пользуются понятием яркости источника. Это — сила света, отнесенная к единице поверхности источника света. Яркость измеряется в стильбах: один стильб равен канделе, поделенной на квадратный сантиметр.
Один и тот же источник света принесет равную световую энергию к странице раскрытой книги в зависимости от того, где он находится. Для читателя важно, какова освещенность участка письменного стола, на котором лежит книга. Если размер источника невелик (точечный источник), то освещенность равна силе света, поделенной на квадрат расстояния от источника. Почему на квадрат? Ответ ясен: световой поток остается неизменным внутри заданного телесного угла, как бы далеко мы ни ушли от светящейся точки. Ну, а площадь сферы и площадь участка, вырезаемого заданным телесным углом, будут шести обратно пропорционально квадрату расстояния. Это простое правило называют законом обратных квадратов. Изменив расстояние читаемой книги от маленькой лампочки с 1 до 10 м, мы уменьшим освещенность страницы книги в сто раз.
Единица освещенности — люкс. Такую освещенность создает поток света, равный 1 лм, на площади в 1 м>2.
Освещенность в безлунную ночь равна 0,0003 лк. Так что когда мы говорим: «ни зги не видно», то определяем освещенность, этой самой «зги». В лунную ночь освещенность равна — 0,2 лк. Чтобы читать, не напрягая глаз, требуется освещенность 30 лк. При киносъемке включают мощные прожекторы и доводят освещенность предметов до 10 000 лк.
Но мы ничего еще не сказали о приборах, которые служат для измерения, световых потоков и освещенностей. В настоящее время такие измерения — не проблема. Фактически мы действуем именно так, как надо было бы поступить, дав новое определение канделы. Мы измеряем энергию, падающую на фотоэлемент, а шкалу фотоэлемента градуируем в люксах с учетом кривой видности.
Существовавшие в прошлом веке фотометры работали по принципу сравнения яркостей двух освещенных смежных площадок. На одну из них падал свет, силу которого мы хотели измерить. С помощью нехитрых приспособлений световой поток уменьшали в известное число раз так, чтобы в конце концов смежные площадки были освещены одинаково.
Создание лазеров знаменует новую эпоху в развитии науки и техники. Трудно найти такую область знания, в которой стимулированное излучение не открыло бы новые возможности.
В 1947 г. Д. Габор предложил использовать когерентный свет для получения изображения объекта совершенно новым способом. Новая техника, получившая название голографии, коренным, образом отличается от фотографии. Голография становится возможной только лишь благодаря особенностям стимулированного излучения, отличающим его от обычного света.
Еще раз подчеркнем, что при лазерном излучении почти все фотоны совпадают по всем своим признакам — частоте, фазе, поляризации и направлению распространения. Лазерный луч размывается в ничтожной степени, т. е. можно получить чрезвычайно тонкий луч на больших расстояниях от источника, лазерному лучу свойственна очень большая когерентная длина (длина цуга волн). Благодаря последнему обстоятельству (оно-то и важно для голографии) возможна интерференция расщепленных лучей с большой разностью хода.