Фотоны и ядра - страница 29

стр.


РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ

В 1912 г. Рентген был руководителем кафедры физики Мюнхенского университета. Проблемы, касающиеся природы икс-лучей, обсуждались на этой кафедре неустанно. Надо сказать, что Рентген, будучи сам физиком-экспериментатором, относился с большим уважением к теории. На кафедре физики Мюнхенского университета трудилось много талантливых теоретиков, которые ломали себе голову над тем, что представляют собой рентгеновские лучи.

Разумеется, были сделаны попытки выяснить природу рентгеновских лучей, исследуя их прохождение через дифракционную решетку. (Напомним читателю, что представляет собой дифракционная решетка, с помощью которой однозначно доказывается волновая природа света и вдобавок весьма точно определяется длина волны того или иного излучения.

Один из способов изготовления такой решетки состоит в том, что на стеклянную пластинку, покрытую слоем алюминия, мягким резцом из слоновой кости при помощи специальных машин наносятся штрихи. Штрихи должны отстоять на строго одинаковых расстояниях друг от друга. Хорошая решетка должна обладать малым периодом (общая ширина щели и непрозрачного промежутка) и большим числом штрихов. Удается довести это число до сотен тысяч, при этом на 1 мм приходится более тысячи штрихов.

При помощи линзы сильный точечный источник света дает параллельный пучок света, который падает на решетку под прямым углом. Из каждой щели лучи выходят во все стороны (иными словами — каждая щель становится источником сферической волны). Но лишь в избранных направлениях волны от всех щелей будут синфазны. Для взаимной поддержки требуется чтобы разность хода равнялась целому числу длин волн. Сильные лучи пойдут в направлениях под углом а, подчиняющихся условию

а∙sin α = nλ,

где n — целое число, а — период решетки. Читатель легко выведет эту формулу без нашей помощи.

Целое число n называют порядком спектра. Если на решетку падает монохроматический луч, то мы получим в фокальной плоскости окуляра несколько линий, разделенных темными промежутками. Если свет состоит из волн разной длины, то решетка создает несколько спектров — первого, второго и т. д. порядков. Каждый последующий спектр будет более растянут, чем предыдущий.

Поскольку длина волны света того же порядка, что-и расстояние между щелями, то дифракционные решетки разлагают свет (притом не только видимый, но также ультрафиолетовый и в особенности хорошо инфракрасный) в спектры. С их помощью можно проводить детальный спектральный анализ.

Но в отношении рентгеновских лучей дифракционные решетки вели себя как система открытых дверей. Рентгеновские лучи проходили через них не отклоняясь. Можно было предполагать, что рентгеновские лучи являются потоком частиц. Но не возбранялось думать, что рентгеновское излучение — это такое же электромагнитное излучение, как и свет, но только длина волны λ много короче. И правда, предположим, что λ очень мала. Если так, то согласно условию дифракции от линейной оптической решетки а∙sin α = nλ все n лучей, идущие под углами отклонения α, практически сольются, и дифракция не будет заметна. Но сделать дифракционную решетку с щелями, отстоящими друг от друга на расстоянии а, равном миллионным долям микрометра, вещь невозможная. Как же быть? Физик Макс Лауэ (1879–1960) еще в самом начале своей научной деятельности был уверен, что рентгеновские лучи — это электромагнитное излучение. Его знакомый кристаллограф, с которым они часто беседовали, был убежден, что кристалл представляет собой трехмерную решетку атомов. В одной из бесчисленных бесед на научные темы Лауэ решил сопоставить свою идею о природе рентгеновских лучей с представлением о кристалле как о решетке. «А вдруг расстояния между атомами кристалла и длина волны рентгеновских лучей — величины одного порядка?» — подумал Лауэ.

Может ли трехмерная решетка заменить линейную решетку щелей? Ответ на этот вопрос был не очевиден; тем не менее Лауэ решил попробовать. Первый опыт был совсем прост. Диафрагмировали пучок рентгеновских лучей. На пути лучей поставили крупный кристалл, а рядом с кристаллом — фотографическую пластинку. Правда, не очень ясно было, куда ставить пластинку, поскольку кристалл все же не линейная решетка. Место для пластинки было выбрано неудачное, и некоторое время опыт не получался. Забавно, что в правильное положение пластинка была поставлена случайно, по ошибке.