Фотоны и ядра - страница 36

стр.

Малоугловым называют обычно рассеяние (я опять повторю, что деление на малоугловое рассеяние и рассеяние под большими углами несколько условно) в диапазоне от нескольких минут до 3–4°. Естественно, чем меньше угол дифракции, тем больше период повторяемости структурных элементов, которые эту дифракцию создали.

Рассеяние под большими углами обусловлено порядком в расположении атомов внутри кристаллитов. Что же касается малоуглового рассеяния, то оно связано с упорядоченным расположением довольно больших образований, которые называются надмолекулярными. Может случиться и так, что внутри этих образований, состоящих из сотен или тысяч атомов, нет никакого порядка. Но если такие крупные системы образуют одномерные, двумерные или трехмерные решетки, то рентгеновское малоугловое рассеяние расскажет об этом. Чтобы у читателя был зрительный образ, я предлагаю ему представить себе аккуратную конструкцию из мешков с картофелем. Чрезвычайно интересно и, вероятно, имеет глубокий смысл то обстоятельство, что мы встречаемся с таким «мешочечным» порядком в очень многих биологических системах. Например, длинные молекулы, образующие ткань мускулов, расположены так аккуратно, как карандаши кругового сечения в пачке. С исключительно высокой упорядоченностью этого типа мы сталкиваемся, как показывает рентгеновское малоугловое рассеяние, в мембранах клеток, в таких белковых системах, как вирусы, и т. д.

В теории дифракции существует интересная теорема, которую я не стану доказывать, но думаю, что она покажется естественной читателям. Можно строго показать, что вид дифракционной картины остается тем же самым, если в объекте, дающем дифракцию, поменять местами отверстия и непрозрачные промежутки. Иногда эта теорема заставляет исследователя помучиться. Это бывает тогда, когда он с одинаковым успехом может объяснить рентгеновское рассеяние как порами внутри вещества, так и чужеродными включениями. Изучение пор — их размера, формы, количества на единицу объема — представляет большой интерес для практиков. От этих особенностей структуры: синтетических волокон зависит в сильнейшей степени то, как они будут окрашиваться. Нетрудно догадаться, что неравномерное распределение пор явится причиной неравномерной окраски. Получится некрасивая ткань. Из всего сказанного достаточно очевидно, что рентгенография материалов является не только методом исследования вещества, но и методом технического контроля самых различных производств.

Глава 4

Обобщения механики

РЕЛЯТИВИСТСКАЯ МЕХАНИКА

Механика Ньютона, которую мы изложили в 1-й книге, является величайшим достижением человеческого гения. С ее помощью рассчитываются пути планет, траектории ракет, поведение механизмов. Развитие физики в XX веке показало, что законы ньютоновской механики имеют два ограничения: они становятся непригодными, когда речь идет о движении частиц малой массы; они перестают служить нам верой и правдой, когда речь идет о движении тел со скоростями, близкими к скорости света. Для малых частиц механику Ньютона заменяют так называемой волновой механикой, для быстро движущихся тел — релятивистской механикой.

Классическую механику приходится также несколько усложнить, когда мы сталкиваемся с очень большими силами тяготения. Непредставимо огромные поля тяготения, которые командуют поведением некоторых сверхплотных звезд, не разрешают ограничиться теми простыми формулами механики, с которыми читатель познакомился в 1-й книге. Но эти изменения мы оставим в стороне и остановимся на двух важнейших обобщениях, которые приходится делать, когда мы рассматриваем движения микрочастиц и когда изучаются движения со скоростями, близкими к скорости света.

Начнем с релятивистской механики. Путь к этой важной главе физики меньше всего напоминает прямую дорогу. Он не только извилист, но был проложен вроде бы через совсем другие страны. История началась с эфира. Вообще-то говоря, в конце XIX века физики благодушествовали. Учитель Макса Планка не советовал ему посвятить себя физике, ибо наука эта, по сути дела, закончена. Всего лишь два «пустяка» несколько портили вид стройного здания: не ладилось с объяснением излучения черного тела (разобравшись в этой «мелочи», физики пришли к открытию квантов), и потом портил настроение опыт Майкельсона. Этот эксперимент, доказавший что скорость света не складывается со скоростью Земли и одинакова во всех направлениях, заставил задуматься о свойствах эфира.