Фотоны и ядра - страница 43
с. Разумеется, два последних числа не идут ни в какое сравнение.
Но тем не менее хочется привести в систему и эти короткоживущие обломки материи. Для элементарных частиц предлагалось много таких систем. Но как только на сцену выходил более мощный ускоритель, с его помощью обнаруживались новые явления, которые не укладывались в принятую схему.
В момент, когда пишутся эти строки, специалисты настроены оптимистически. Всю систему элементарных частиц удается как будто бы свести к «проточастицам», которые получили название кварков. Беда в том, что кварки, в отличие от электронов и протонов, не наблюдались и, вероятно, не могут наблюдаться в принципе. Чтобы создать «систему Менделеева» для элементарных частиц, кварку приходится придать электрический заряд, равный либо одной трети, либо двум третям заряда электрона, и приписать два дополнительных параметра, которым нельзя сопоставить какой бы то ни было образ. Эти параметры носят названия «странность» и «шарм»[2].
Автор этой книги не собирается останавливаться на проблемах, связанных с элементарными частицами. Он не делает этого не потому, что трудно популярно объяснить существующие схемы, а по той причине, что еще рано быть уверенными в их шарме и красоте. Не исключено, что появятся совсем новые идеи касательно элементарных частиц, совсем новые принципы подхода к этим крошечным участкам Вселенной, измеряемым (в сантиметрах) единицей, поделенной на единицу с тринадцатью нулями.
В 1923 г. в работе исключительной смелости и гениальной простоты французский физик Луи де Бройль писал: «В оптике в течение столетий слишком пренебрегали корпускулярным способом рассмотрения по сравнению с волновым. Не делалась ли в теории микрочастиц обратная ошибка?» В этой работе де Бройль указал путь, следуя которому можно было связать с частицами волновые представления.
Его работу продолжает и завершает замечательный немецкий физик Эрвин Шредингер. А несколько позже, к 1926–1927 гг., становится ясным, что волновая механика и квантовая механика — по сути дела равнозначные термины. Эта новая механика представляет собой важнейший раздел физики, который учит нас, как рассматривать поведение микрочастиц в тех случаях, когда ни корпускулярный аспект, ни волновой недостаточны для трактовки событий.
Мы предупреждали читателя, что не следует слишком буквально понимать выражение «электромагнитная волна». И радиоизлучение, и свет, и рентгеновские лучи могут быть рассмотрены в двух аспектах: волновом и корпускулярном. Совершенно такое же утверждение справедливо и для потоков частиц. Хотя потоки частиц имеют четкие отличия от электромагнитного излучения (главное из них, то, что электроны, ядра, нейтроны и ионы могут двигаться с любыми скоростями, а фотоны — только со скоростью 300 000 км/с), этот вид: материи также выявляет в различных экспериментах то свойства волны, то свойства корпускул.
Какова же длина волны, которую надо приписать движущейся частице? С помощью рассуждений, которые в несколько упрощенном виде мы сейчас изложим, де Бройль показывает (вернее сказать, догадывается), чему должна быть равна длина волны, связанная с потоком частиц.
Обратимся к основным соотношениям, которые связывают корпускулярный аспект электромагнитного излучения с волновым. Порция энергии электромагнитного излучения, которую несет с собой фотон, выражается формулой E = h∙v. Энергия фотона, как и любой другой порции материи, подчиняется уравнению Эйнштейна. Таким образом, энергия фотона может быть представлена и формулой Е = m∙c>2. Отсюда следует, что масса фотона[3]m = h∙v/c>2. Умножая массу на скорость, мы получим значение импульса фотона:
p = h∙v/c = h/λ
Но нас интересует длина волны частицы, масса покоя которой отлична от нуля. Как догадаться, чему она равна? Допустить, что все приведенное рассуждение остается в силе; принять, что соотношение между импульсом и длиной волны является универсальным! Остается переписать это выражение в виде
λ = h/m∙v
Это и есть знаменитая формула де Бройля. Она показывает, что волновой аспект потока частиц должен проявляться особенно отчетливо, когда невелики масса и скорость частицы. Это и подтверждается опытом, ибо дифракцию частиц, оказывается, легко наблюдать в случае электронов и медленных нейтронов.