Гены и развитие организма - страница 49

стр.

Манипуляции с молекулами нуклеиновых кислот стали особенно разнообразными и эффективными после того, как появились методы генной инженерии. С их помощью удалось обнаружить в эмбриональных клетках слабую активность многих тысяч генов, которые до того считались «молчащими», а также подсчитать количество копий различных мРНК, и в том числе мРНК для некоторых отдельных белков. Эти данные заставляют сейчас по-новому пересмотреть многие, казалось бы уже устоявшиеся, представления.

1. Ренатурация ДНК с ДНК

Для исследования ренатурации ДНК ее предварительно разрезают на небольшие куски, но 300–600 пар нуклеотидов, денатурируют нагреванием, а затем подвергают длительному отжигу при температуре 70–80°, при которой случайные короткие комплементарные последовательности распадаются, а ренатурируют лишь большие комплементарные участки ДНК, фактически те самые, которые оказались разделенными при денатурации.

Ренатурация ДНК вирусов происходит очень быстро. Так как скорость ренатурации зависит от концентрации ДНК (C>0), то точнее говорить, что для вирусной ДНК низко произведение концентрации на время ренатурации (C>0t). Это и понятно, так как количество генов в геноме вирусов мало (порядка сотни) и вероятность одиночной нити ДНК «найти» «свою» вторую половину достаточно велика. Ренатурация ДНК бактерий происходит значительно дольше — число различных генов и, следовательно, число различных последовательностей ДНК в этом случае выше в десятки раз.

Казалось, можно было предсказать, что ренатурация ДНК животных должна идти еще намного медленнее (величина C>0t должна быть выше). Однако фактически это не совсем так. Определенная часть ДНК (около 10 %) ренатурирует очень быстро, как у вирусов или еще быстрее. Еще некоторая, иногда значительная часть ДНК ренатурирует тоже довольно быстро, хотя и медленнее, чем у вирусов и бактерий. И лишь остальные 50–70 % ДНК (иногда меньше) ренатурируют так медленно, как это и ожидалось (C>0t в 10>3 раз выше, чем для ДНК бактерий).

Объяснение этому факту — в том, что часть ДНК в геноме животных и растений состоит из повторяющихся последовательностей ДНК. Действительно, если какие-либо гены повторяются сотни или тысячи раз, то их концентрация в растворе соответственно возрастает и скорость их ренатурации будет выше, чем для генов, которые уникальны, т. е. представлены в геноме только один раз. He все повторяющиеся последовательности являются настоящими генами, т. е. несут информацию о структуре белка. Так, особенно высоко повторяющиеся последовательности (10>4—10>5 раз на геном) состоят из одинаковых коротких, идущих друг за другом (тандемных) участков и находятся на концах хромосом и в тех точках, к которым прикрепляются нити веретена при митозе. Очевидно, что эти ДНК служат не для кодирования белков, а выполняют в хромосоме какую-то механическую роль.

Среди умеренных повторов (10>2-10>3 раз) роль некоторых известна; Это прежде всего те участки ДНК, которые кодируют РНК для белоксинтезирующей машины. Хотяэти участки ДНК и не кодируют белки, но их тоже часто называют генами. Так, гены больших рРНК (18S и 28S) повторяются от нескольких десятков раз у насекомых до тысяч раз у отдельных рыб и амфибий.

Еще чаще повторяются гены для маленького компонента рибосомной РНК — 5S РНК: у ксенопуса их 24 000, а у человека 2000. Наконец, гены для транспортных РНК(их более 40 видов) также повторяются сотни и тысячи раз, но для разных видов тРНК число этих повторов различно.

Смысл таких повторов для генов рРНК и тРНК, очевидно, состоит в том, чтобы обеспечить достаточное количество рибосом и скорость трансляции на них в тех клетках, где синтез белка особенно интенсивен. В первую очередь это относится к ооцитам, в которых гены больших рРНК еще и амплифицируются (гл. 2).

Оказалось, что повторяются, хотя и не в такой степени, и некоторые настоящие гены, кодирующие белки. В наибольшей степени это относится к генам гистонов: в хромосомах морского ежа каждый из них повторяется несколько сот раз. Гены многих других белков повторяются два— четыре раза.

Эти повторы в ДНК создают определенную проблему для понимания процессов эволюции. С одной стороны они должны замедлять течение эволюции. Случайная мутация, затронувшая один из повторяющихся генов, в принципе не должна подвергаться действию отбора. Так, например, мутация в одном из генов рРНК или в одном из гистоповых генов окажет очень небольшое полезное или вредное влияние на работу рибосом или ядер: ведь вся остальная, подавляющая масса рРНК или гистонов окажется неизменной. Ho если это так, то с течением времени такие «неотбираемые» мутации должны накапливаться в геноме и создавать все большие отличия между ранее одинаковыми генами. Ho в действительности таких различий нет или очень мало. Отсюда возникли предположения, которые уже нашли некоторые фактические подтверждения, о том, что в клетках существует какой-то механизм коррекции, который исправляет постоянно возникающие отличия между повторами или скорее заменяет каждый набор повторяющихся генов точными копиями одного из них. Тогда в эволюции естественный отбор сохранит лишь те организмы, у которых гены рРНК или гистонов остались неизменными пли стали «лучше», чем были.