Геометрическая рапсодия - страница 4

стр.

Таинственные причины, побудившие меня в свое время стать "рапсодом" геометрии, действовали, вероятно, одновременно во всем мире. Результатом этого явилось необычно большое число книг, так или иначе касающихся увлекательных проблем этой мудрой науки, которые появились на полках магазинов к концу семидесятых — началу восьмидесятых годов, отставая от времени выхода оригиналов на те несколько лет, что потребовал их перевод. Кроме их авторов, еще трем человекам обязан я чувством сопричастности к интересам и мыслям многих других людей — Ю. А. Данилову, переводчику многих прекрасных книг, а также уже упоминавшемуся Я. А. Смородинскому и доктору физико-математических наук И. М. Яглому — редакторам, авторам предисловий и послесловий к этим работам.

Будучи лишенным возможности перечислить все замечательные книги, имеющие отношение к красоте и изяществу геометрической мысли, которые появились за истекшее десятилетие, я хочу назвать лишь те из них, что в наибольшей мере подогрели мою решимость вернуться к геометрическим увлечениям прошедших дней. Это прежде всего "Симметрия природы и природа симметрии" Ю. А. Урманцева (М., Мысль, 1974), "Жар холодных чисел и пафос бесстрастной логики" Б. В. Бирюкова и В. Н. Тростникова (М., Знание, 1977), "Узоры симметрии" (М., Мир, 1980), затем "Флатланд" Э. Эбботта и "Сферландия" Д. Бюргера (М., Мир, 1976), "Пространственные построения в живописи" Б. В. Раушенбаха (М., Наука, 1980), "Новые встречи с геометрией" Г. Коксетера и С. Грейтцера (М., Наука, 1978), "Симметрия в науке и искусстве" А. В. Шубникова и В. А. Копцика (М., Наука, 1972), "Этюды о симметрии" Е. Вигнера (М., Мир, 1971), "Россыпи головоломок" Ст. Барра (М., Мир, 1978), третье издание "Наглядной геометрии" Д. Гильберта и С. Кон-Фоссена (М., Наука, 1981) и, наконец, "Модели многогранников" М. Веннинджера (М., Мир, 1974). Но, быть может, в наибольшей мере появлением своим книга эта обязана серии переводов прекрасных книг Мартина Гарднера, бессменного ведущего математического раздела журнала "Сайентифик Америкэн" — "Математические головоломки и развлечения" (М., Мир, 1971), "Математические досуги" (М., Мир, 1972) и "Математические новеллы" (М., Мир, 1973), а также совсем уж поразительной и по форме и по содержанию книге "Гедель, Эсхер, Бах: вечная золотая цепь" Дугласа Хофстадтера, который пришел на смену оставившему все-таки свой журнальный пост Гарднеру (о ней речь тоже пойдет в "Вариациях").

Это перечисление работ, оставивших свой след в предлагаемой вниманию читателя книге, можно было бы без особого труда продолжить и тем самым, пусть и в косвенной форме, выразить благодарность их авторам.

К. Левитин Добринка, 1984 г.

Строгость математическая, которая состоит в том, чтоб ничего, кроме известного и ясно доказанного, за основание не принимать, нечувствительно приучает рассуждать о вещах твердо и основательно.

Степан Яковлевич Румовский

Интродукция

Все, что находится в природе, математически точно и определенно; и если иногда мы сомневаемся в этой точности, то наше невежество ничего не отнимает от этой достоверности; если бы весь мир сомневался в том, что дважды два — четыре, то все-таки у всех сомневающихся дважды два дадут четыре.

Михаил Васильевич Ломоносов

I

"Рапсодия — это вариации на известные темы", — утверждает "Музыкальный словарь".

Темы бывают разные, в том числе вечные. Устройство мира, его геометрия — одна из них.

II

"Большинство людей получают определенное удовольствие от математики, так же как большинство людей могут наслаждаться прекрасной мелодией, но при этом больше людей интересуются все-таки математикой, а не музыкой" — это утверждение принадлежит Готфриду Гарольду Харди, известному современному математику.

III

Никто, конечно, не подсчитывал, сколько людей интересуется математикой, а сколько — музыкой, хотя на интуитивной основе с Харди можно, вероятно, согласиться: ведь математика не только доставляет удовольствие; изучая "пространственные формы и количественные отношения действительного мира" (Ф. Энгельс), она удовлетворяет практические потребности людей. Однако природа удовольствия, которое получают люди, увлекающиеся математикой, и природа удовольствия, доставляемого музыкой, действительно одна и та же. "Живопись — это музыка для глаз", — говорил французский живописец и график Делакруа. "Ни один живописец не может писать, не зная геометрии", — утверждал Альберти, видный итальянский ученый, архитектор и теоретик искусства Раннего Возрождения.