Гибель шахмат - страница 14

стр.

„С профессором я был знаком еще по университету, где, как известно, он читал специальный курс дифференциального и интегрального исчисления. В последнее время я часто встречал его у отца, от которого и узнал о предстоящей демонстрации шахматного автомата.

„Будучи математиком и немножко шахматистом, я, естественно, заинтересовался и сущностью системы профессора и принципами конструкции его механизма. После долгих моих просьб и упорного нежелания М. И. объяснить мне, на основании каких законов и предпосылок был создан этот удивительный механизм, профессор, взяв с меня слово, что это останется тайной, победил, наконец, свою недоверчивость.

„Его теория в принципе оказалась очень проста. И передать ее здесь не представляет больших затруднений. Поэтому, полагая, что вопрос этот интересует сейчас немало умов, я постараюсь не упустить ни одной детали.

„Сначала немножко истории.

„Профессор в молодости увлекался египтологией. Участвуя в экспедиции на раскопках близ Хемпдена в Египте, он нашел чрезвычайно любопытный документ, отнесенный им приблизительно к эпохе царствования Амнериса II. Документ представлял собой свиток папируса, на котором была изображена шахматная доска, с довольно примитивными начертаниями фигур и группами различных цифр и знаков.

„Над расшифровкой этого документа профессор проработал около пяти лет. В конце концов ему удалось установить, что это была своеобразная теория шахматной игры, устанавливающая определенные математические законы для ее комбинаций.

„По теории авторов документа, каждая фигура и каждая клетка обозначалась определенными, постоянными цифрами. Комбинация этих цифр, точно вычисленная и проверенная, давала, по их мнению, всегда нужный ход и нужную вариацию.

„В результате упорной работы над разработкой и проверкой этих примитивных, по существу, принципов профессор установил ясную и точную систему.

„Вот приблизительно ее сущность:

„На каждый ход всегда имеется только один ответ. Никаких других ответов быть не может, так как одинаковая значимость их — всегда только кажущаяся, и все они, кроме одного, в результате всегда ошибочны.

Человеческий мозг не в силах с математической точностью за десять — двадцать — тридцать и более ходов рассчитать правильность своего ответа, поэтому ошибки всегда неизбежны. Делающий наименьшее число их обычно выигрывает.

„Правильные ходы в игре встречаются очень часто, так как современные изыскания шахматных теоретиков путем ряда проверок установили для многих положений безошибочные ходы. Но, принимая во внимание огромное число шахматных комбинаций (первый ход дает их уже четыреста, а для вычисления числа комбинаций, получаемых со второго хода, потребуется применение высшей математики), ясно, что число правильных, безошибочных ходов, даже самых первоклассных маэстро всегда ограниченно.

„Поэтому, при абсолютно правильной игре белых, делающие так или иначе какие-то ошибки черные всегда проигрывают. При абсолютно верной игре черных все-таки выигрывают белые, если они делают первый ход. Вот почему автомат всегда играл только белыми.

„Но как можно было установить этот, для любого случая и любой комбинации, нужный ход? Применяя цифровые обозначения фигур и клеток на имеющемся у него документе, профессору удалось составить определенную формулу, при которой всегда при любом положении можно было найти этот безошибочный ход.

„При составлении формулы М. И. Ястребов руководился следующими факторами:

1. X — нужный ход.

2. Цифра фигуры, обозначаемая a, a>1, a>2, a>3, и т. д. до 16.

3. Цифра клетки, обозначаемая b, b>1, b>2, b>3, и т. д. до 64.

4. Отношение между цифрами каждой фигуры, обозначаемое — a/a>1=c.

5. Отношение между цифрами каждой клетки, обозначаемое b/b>1=d.

6. Отношение между цифрами фигур и клеток, обозначаемое a/b=e.

„Кроме того, один определенный коэффициент 1,23 и некоторые постоянные величины, обозначаемые им α, β, γ.

„Обозначая суммы цифр и клеток и отношений между ними через прописные, получаем:

Σa=A, Σb=B, Σc=C, Σd=D, и Σe=E.

„Таким образом, применяя эти обозначения профессора, мы имеем следующую формулу: