Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания - страница 22

стр.

Чтобы было легче понять эту идею, снова представьте, что пассажир космического корабля играет в «световой пинг-понг», но не вверх-вниз, а вперед-назад (в направлении движения корабля). То есть он размещает зеркало на передней стенке и направляет к нему луч света, который отражается и летит обратно к задней стенке, где установлено еще одно зеркало. Умножая время полета луча от стенки к стенке на скорость света, он определяет общую длину его пути. На Земле его сестра наблюдает за кораблем в свой супермощный телескоп и измеряет длину пути этого же луча. Поскольку корабль мчится в том же направлении, что и луч света (до того, как он отразится от передней стенки), то она обнаружит, что время, которое затрачивает луч на прохождение всего пути вперед и назад, будет меньше, чем с точки зрения ее брата. Следовательно, по ее наблюдениям, длина пути луча света будет меньше.

В последующих работах по специальной теории относительности Эйнштейн показал, что происходит с массой при движении с большими скоростями. Он предположил, что релятивистская масса эквивалентна энергии и они связаны знаменитым уравнением Е = тс>2. Пока объект не движется, он обладает только массой покоя — его врожденной характеристикой, так сказать. По мере того как он разгоняется, его масса, связанная с его энергией движения, увеличивается. И чем ближе его скорость к скорости света, тем больше его масса. Но чтобы разогнать объект до скорости света, потребуется преобразовать в массу бесконечное количество энергии, а это невозможно. Таким образом, для материальных тел скорость света недостижима (если только объект уже не движется с такой скоростью).


Союз пространства и времени

После того как Эйнштейн опубликовал свои потрясающие результаты, немецкое научное сообщество наконец-то обратило на него внимание. Но до всемирной славы было еще далеко. Одним из первых его сторонников стал физик Макс фон Лауэ, бывший тогда ассистентом Планка в Берлине. Летом 1906 года он нашел время, чтобы навестить Эйнштейна в патентном бюро. Он сидел в приемной, нетерпеливо ожидая встречи с удивительным наследником трона Ньютона.

Фон Лауэ вспоминал: «Молодой человек, вышедший встретить меня, выглядел настолько неожиданно для меня, что я не мог поверить в то, что это и есть создатель теории относительности. Так что я позволил ему пройти мимо, и лишь когда он вернулся из приемной, нас познакомили»>{22}.

Фон Лауэ много сделал для продвижения теории относительности Эйнштейна и изучения множества ее следствий. Он написал первый учебник по теории относительности, изданный в 1911 году. Эйнштейн высоко ценил его поддержку и дружбу, которая продлилась всю их жизнь.

Другим его сторонником оказался Минковский, кардинально изменивший мнение о бывшем студенте. Пораженный тем, что «лентяй» смог дать верную трактовку уравнениям Максвелла, Минковский решил переформулировать теорию более точным математическим языком. В то время он уже занимал пост профессора в «математической Мекке» — Гёттингене, где влиятельный логик и геометр Давид Гильберт занял место главного новатора в науке Клейна. В этом центре изучения всего, лежащего за пределами евклидовой геометрии, Минковский чувствовал себя на своем месте и использовал новейшие достижения математиков по максимуму.

Минковский гениально подметил, что теория Эйнштейна будет выглядеть значительно более изящно, если ее переформулировать в терминах четырехмерной геометрии. Он предложил альтернативу евклидову пространству, имеющую два ключевых отличия от последнего. Первое отличие заключалось в том, что в новое пространство помимо известных трех измерений: длины, ширины и высоты, было добавлено время (умноженное на скорость света, чтобы временную координату можно было выражать в тех же единицах измерения, что и пространственные координаты) в качестве четвертого измерения. Он назвал этот союз пространство-время.

Второе изменение связано с добавлением отрицательного слагаемого в теорему Пифагора, которая применяется для определения расстояний. Ее стандартная формулировка, используемая на протяжении тысячелетий для нахождения гипотенузы прямоугольного треугольника, гласит: сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы. Например, в прямоугольном треугольнике со сторонами, равными 3, 4 и 5, выполняется равенство: 3