Искатель, 1965 № 03 - страница 22
Но у таких гигантов, как Сверхзвезды, тяготение — безраздельно господствующая сила, все остальные подчиняются ей. И в недрах Сверхзвезд, конечно, происходит термоядерная реакция. Но она играет лишь побочную, «третьестепенную» роль, а главный источник энергии — тяготение.
Именно такую гипотезу выдвинули в своей статье, предсказывавшей открытие Сверхзвезд, Хойл и Фоулер.
Сверхзвезды, как и другие светила, видимо, рождаются из постепенно сжимающегося под действием гравитации газопылевого облака. Это полностью соответствует космогонической концепции советского академика В. А. Амбарцумяна. Но у обычных звезд наступает момент, когда сжимающую силу притяжения уравновешивает давление горячего газа изнутри. У Сверхзвезды же невообразимая сила тяготения преодолевает это внутреннее сопротивление.
«Сжавшись» до определенного критического размера, звезда уже обречена. Наступает «гравитационный коллапс»: за каких-то пятнадцать минут Сверхзвезда, в сто миллионов раз превышающая по массе наше Солнце, неотвратимо сжимается «в точку». Именно при этом чудовищном коллапсе, по мнению Хойла и Фоулера, и выделяется громадная энергия в виде световых волн и радиоизлучения.
Казалось бы, такое сжатие должно закончиться невероятной силы взрывом. Но…
Все происходит не по привычным нам земным законам.
Критические размеры для звезд, при достижении которых ничто уже не может противостоять силе тяготения, называют сферой Шварцшильда в честь австрийского ученого, еще в 1916 году вычислившего их на основе уравнений общей теории относительности. Кстати, теория Сверхзвезд небольших размеров была разработана тоже сравнительно давно, в тридцатых годах, Л. Д. Ландау и Р. Оппенгеймером.
Однако до сих пор расчеты теоретиков просто негде было проверить в окружающей нас вселенной. Для Солнца гравитационный критический радиус равен примерно 3 километрам. А истинный радиус нашего светила — около 700 тысяч километров, и оно вовсе не собирается сжиматься до сферы Шварцшильда.
Только теперь, с открытием Сверхзвезд, ученые получили в свое распоряжение объекты исследований, которым оказались «по плечу» «мерки» общей теории относительности!
Когда Сверхзвезда сжимается до критических размеров сферы Шварцшильда, начинаются необычные, просто парадоксальные явления.
Сжимающееся почти со скоростью света вещество в сильнейшем поле тяготения изменяет течение времени в Сверхзвезде, замедляет ею. Время становится «растянутым», словно при замедленном показе кинофильма. Поэтому мы никогда не сможем увидеть, как завершится коллапс и Сверхзвезда «сожмется в точку». Течение времени как бы останавливается!
Немыслимо? Невообразимо? Но когда вступаешь в причудливый мир общей теории относительности, воображение, как уже мы убедились, отстает от трезвой логики. С этим приходится примириться.
И все-таки попробуем если не представить себе наглядно необычные процессы, то хотя бы понять их закономерность.
Вот как объясняет это явление академик Яков Борисович Зельдович:
«Представим себе космонавта на ракете, приближающейся к Сверхзвезде. Допустим, что у него есть хронометр, который отсчитывает секунды. Каждую секунду космонавт посылает сигнал по радио, и эти сигналы принимаются где-то у нас на приемной станции. Забудем на время, что звезду отделяют от нас гигантские расстояния и сигнал идет долго.
Пока космонавт находится далеко от Сверхзвезды, сигналы приходят к нам равномерно, через секунду. Но вот он попал в сферу притяжения огромного сгустка вещества, оно захватывает корабль и разгоняет до околосветовой скорости. В это время на приемной станции промежутки между сигналами все время увеличиваются.
Здесь складываются два эффекта: увеличение скорости (направленной к звезде) и замедление времени в окрестностях большой массы. В конце концов последний сигнал, которым космонавт хотел сообщить, что он подлетел к определенному радиусу Сверхзвезды (имеется в виду сфера Шварцшильда. — Н. П.), вообще никогда не будет принят.
Примерно такая ситуация наблюдается и для вещества наших объектов. Звезда неудержимо сжимается. Сначала сжатие идет медленно, потом ускоряется: но когда вещество подходит к критической точке, где его скорость приближается к скорости света, сжатие звезды для нас, далеких наблюдателей, замедляется.