Исследование психологии процесса изобретения в области математики - страница 20
Первый случай, который я вспоминаю из своей жизни, касался формулы, которую я получил в самом начале моей исследовательской работы; я решил её не публиковать и добиться вывода из неё важных следствий. В это время все мои мысли, как и мысли многих аналитиков, были прикованы к единственному вопросу: доказательству знаменитой «теоремы Пикара». Полученная мною формула давала совершенно очевидно один из результатов, который я открыл четырьмя годами позднее гораздо более сложным путём; и я не отдавал себе в этом отчёта, пока через много лет Иенсен не опубликовал эту формулу и не отметил, как её непосредственное следствие, результаты, которые я, к счастью для моего самолюбия, уже получил в этот промежуток времени. Ясно, что в 1888 г. я думал исключительно о теореме Пикара.
Следующая моя работа была моей диссертацией. Две теоремы, важные для темы[47], были такими очевидными и непосредственными следствиями идей, содержавшихся в работе, что позднее другие авторы мне их приписывали, и я был вынужден признаваться, что как бы очевидны они ни были, я их не видел.
Несколькими годами позднее я занимался обобщением на гиперповерхности классического понятия кривизны поверхности. Мне нужно было определить понятие кривизны поверхности в гиперпространствах Римана, — обобщение более элементарного понятия кривизны поверхности в обычном пространстве. Мне хотелось получить эту кривизну Римана как кривизну некоторой поверхности S, проведённой в рассматриваемом гиперпространстве, причём форма этой поверхности выбрана таким образом, чтобы кривизна оказалась минимальной. Я сумел показать, что полученный таким образом минимум был в точности выражением Римана; но, думая над этим вопросом, я не обратил внимания на обстоятельства, при которых достигается этот минимум, т. е. на то, как для достижения этого минимума построить S. Изучение этого вопроса привело бы меня к принципу «абсолютного дифференциального исчисления», открытие которого принадлежит Риччи и Леви-Чивиту.
Абсолютное дифференциальное исчисление находится в тесной связи с теорией относительности; и по этому поводу я должен признаться, что, увидев, что уравнение распространения света инвариантно относительно некоторой группы преобразований (известных теперь под названием преобразований Лоренца), в которую входят пространство и время, я прибавил, что «такие преобразования явно лишены физического смысла». А эти преобразования, которые я счёл лишёнными физического смысла, составляют основу теории Эйнштейна!
Продолжая разговор о моих промахах, я отмечу ещё один, о котором я особенно сожалею: речь идёт о знаменитой задаче Дирихле, которую я в течение многих лет пытался решать тем же методом, который избрал Фредгольм, а именно, сводя её к системе с бесконечным числом уравнений первой степени с бесконечным числом неизвестных. Но физическая интерпретация, гид, вообще говоря, очень верный и часто мне помогавший, на этот раз сбила меня с пути. Она мне подсказывала необходимость искать решение проблемы, используя «потенциал простого слоя», что в этом случае было тупиком, в то время как надо было искать решение, вводя «потенциал двойного слоя». Это показывает, насколько справедлива фраза Клода Бернара, цитированная выше: не надо слишком упорно следовать определённому принципу, каким бы плодотворным и справедливым он, вообще говоря, ни был.
Как мы видим, во всех этих примерах причина промаха в своей основе одна и та же. Обратное произошло, когда я однажды не заметил, что одна из задач «аналлагматической геометрии» могла быть неопределённой, что привело к интересным свойствам, открытым Андре Блоком[48]. На этот раз я не следовал строго выбранному первоначально направлению, что привело бы меня к более глубокому исследованию решённой задачи и, следовательно, к тому, чтобы отметить её возможную неопределённость. Этот случай в точности противоположен предыдущим: я был недостаточно верен своей основной идее.
Я должен закончить перечисление этих промахов случаем, который я совершенно не могу объяснить: каким образом, найдя метод для построения условий разрешимости задачи из теории уравнений в частных производных