Измерения и меры - страница 10

стр.

Посмотрим, что получится, если опускать в воронку один за другим большое количество шариков. Из многочисленных опытов выяснилось, что шарики размещаются в пазах по вполне определённому закону, образуя фигуру наподобие той, что изображена на рис. 21, а. Чем больше шариков, тем ближе очертания этой фигуры к кривой, показанной на рис. 21, б. Здесь по вертикали откладывается число шариков, а по горизонтали влево и вправо от середины кривой — отклонение от наиболее вероятного пути, то есть величина случайной погрешности. Таким образом, кривая рис. 21, 6 изображает распределение случайных погрешностей.

Впервые эта закономерность была установлена в прошлом веке выдающимся немецким математиком Гауссом, и поэтому она носит его имя. О чём говорит кривая Гаусса?

Из неё следует, во-первых, что малые погрешности встречаются чаще, чем большие, и, во-вторых, что при многократных измерениях одинаково часто наблюдаются случайные погрешности, которые равны по величине, но отклоняют результат измерения в разные стороны от действительной величины.

И на самом деле, поскольку погрешности носят здесь случайный характер, то вероятность отклонения как в сторону преувеличения, так и в сторону преуменьшения одинакова (в обоих случаях она равна >1/>2).

Отсюда следует, что если сложить полученные значения измеряемой величины, то при достаточно большом числе измерений случайные погрешности, равные по величине, но действующие в разные стороны, уравновесят друг друга. Если теперь сумму полученных значений разделить на число измерений, то в результате получится величина, близкая к действительному значению. Эту величину называют средним арифметическим полученных значений.

Чем больше число измерений, тем ближе среднее арифметическое к действительному значению измеряемой величины. Таким образом, с увеличением числа измерений точность измерения возрастает благодаря устранению случайных погрешностей. Вот, оказывается, в чём смысл мудрой народной пословицы.

ВРЕДНАЯ «ТОЧНОСТЬ»

Производя измерения, нужно стремиться к тому, чтобы они были как можно точнее. Но иногда неоправданная погоня за точностью приводит к заблуждениям и ошибкам. Вот как это получается.

Представьте себе, что вам нужно узнать, во сколько раз один отрезок прямой линии длиннее другого. Вы берёте обыкновенную линейку с миллиметровыми делениями и поочерёдно измеряете оба отрезка.

Положим, результат одного измерения — 80 миллиметров, а другого — 30 миллиметров. Теперь нужно разделить большую величину на меньшую. Получается 2,6666666666… Сколько ни продолжать деление, в остатке всё время оказывается цифра 6. Значит, ответ нужно округлить.

Но на каком знаке после запятой остановиться? Ведь можно написать 2,7, или 2,67, или 2,667 и т. д. Неопытный человек, стремясь получить как можно более точный результат, напишет после запятой целую вереницу цифр, что-нибудь вроде 2,666667. Точен ли такой ответ?

Пользуясь обычной линейкой, можно производить измерения с погрешностью приблизительно до 0,5 миллиметра. Поэтому в действительности длины измеренных отрезков несколько отличаются от 80 и 30 миллиметров. Пусть фактическая длина одного отрезка — 80,356 миллиметров, а другого — 29,679 миллиметра. Посмотрим, чему равен теперь результат деления. Оказывается, он существенно иной — 2,707… Выходит, число 2,666667 ошибочно. Гораздо ближе к истинному был бы в нашем примере как раз наиболее округлённый ответ — 2,7.

Значит, злоупотребляя числом знаков после запятой, мы создаём лишь видимость точности, вводим себя и других в заблуждение. Такая точность просто вредна.

Но если мы измерим отрезки штангенциркулем с погрешностью до 0,1 мм, то один знак после запятой будет уже недостаточен. Чтобы сохранить точность измерения, нужно поставить после запятой две цифры — 2,73.

А если бы измерения велись с помощью микрометра или ещё более точного измерительного инструмента, то после запятой следовало бы поставить ещё больше знаков.

И это будет уже настоящая, оправданная точность.

ЕЩЕ РАЗ О МЕТРЕ

Мы уже говорили, что метр в конце концов перестал быть «природной» мерой. Однако учёные не оставили заманчивую мысль связать меру длины с каким-нибудь неизменным образцом, взятым из природы.