Как мы видим? Нейробиология зрительного восприятия - страница 4
Вот пример, связанный с другим восприятием – слуховым[1]. Возьмем так называемый феномен сегментации. Если кто-то вам скажет: «Вон бежит синяя собака» – вы услышите то, что будет примерно соответствовать написанному выше. Но на самом деле в обычной устной речи мы не делаем пауз между словами (не считая тех случаев, когда мы выделяем каждое слово намеренно). С акустической точки зрения вы слышите эту фразу как один непрерывный звуковой поток: «Вонбежитсиняясобака». Чтобы осмыслить ее, наш мозг разбивает эту длинную последовательность звуков на отдельные знакомые нам слова.
И снова очевидно, что мозг делает это не путем сопоставления слов с некими шаблонами. Сколько звуков должны были бы включать такие шаблоны? Сколько словесных форм? Разумеется, гораздо больше, чем в словаре. И это не говоря уже о разных акцентах, темпах речи, фоновом шуме и многом другом…
Эта загадка – способность, которую мы с такой легкостью используем по многу раз на день, – и есть то, что мы называем проблемой распознавания объектов. Хотя ее принято рассматривать в основном как проблему восприятия, здесь также задействована память: чтобы распознать объект, нам нужно сопоставить текущий раздражитель с воспоминаниями о соответствующих объектах, с которыми мы сталкивались в прошлом. Выяснить, как это работает, – захватывающая научная задача, Эверест сенсорной нейробиологии.
2 | Нейроны, рассказывающие мозгу о внешнем мире
Мы изучаем общее
через изучение конкретного.
СТИВЕН КУФФЛЕР
Как я уже предупредил вас, мир, который мы видим, – вовсе не тот мир, что существует на самом деле. Наша сетчатка анализирует воспринимаемое визуальное изображение, выделяет в нем наиболее значимые компоненты, какие-то из них модифицирует и посылает десятки отдельных потоков сигналов о каждом из них в наш мозг, который собирает из них «видимую» нами картину миру. Все остальное рассматривается как фоновый шум и игнорируется. Такое упрощение сенсорной сигнализации – не просто эволюционная прихоть, а один из наиболее фундаментальных принципов всего восприятия, главная цель которого – экономия.
Чтобы понять, как это работает, давайте начнем с основ.
Нейрон – штука довольно простая. Это крошечный физический объект, состав которого нам понятен. Он включает в себя те же компоненты, которые входят в любую животную клетку, но которые, однако, имеют ряд уникальных особенностей. Когда несколько сотен миллионов нейронов объединяются в сеть, происходят поистине фантастические вещи: мы, владельцы этой нейронной сети, можем узнавать друзей, наслаждаться музыкой Бетховена или ловить мяч одной рукой с расстояния 27 м.
Нейрон, как и все клетки позвоночных, представляет собой мешочек с внутриклеточной жидкостью, отделенный от окружающей среды тонкой эластической мембраной. Одни нейроны похожи на детские воздушные шарики. Форма других более сложна: они походят на амеб. Третьи и вовсе поражают своим причудливым строением. Большинство нейронов напоминают голые деревья зимой с многочисленными ветвями и веточками – с помощью этих отростков они соединяются с другими нейронами, своими ближайшими и дальними соседями. Но при всей замысловатости форм нейрон, как и любая другая клетка, состоит из единого внутреннего пространства, заключенного в границы мембраны – даже если местами эта мембрана напоминает не привычный мыльный пузырь, а тончайшие изогнутые трубочки для напитков.
Что же представляет собой клеточная мембрана? Она состоит из липидов – разновидности жиров, которые, как известно, не смешиваются с водой. Благодаря этому мембрана и выполняет свою барьерную функцию между внутренней и внешней водными средами. Но сама по себе эта липидная оболочка мало что может делать. В лабораторных условиях можно создать искусственную клетку, имеющую одну только клеточную мембрану, но такая клетка будет лежать мертвым грузом. Настоящая клеточная мембрана усеяна мириадами крошечных молекулярных машин, каждая из которых выполняет свою конкретную задачу – например, один из видов встроенных в нее белковых молекул открывает «ворота» (каналы), пропуская внутрь клетки и из нее потоки заряженных частиц (ионов). Этот механизм лежит в основе передачи нервного импульса.