Клиническая эхокардиография - страница 3
Я от всей души надеюсь на то, что эта книга, когда она выйдет в свет, усилит интерес кардиологов, читающих по-русски, к эхокардиографии и пополнит их знания. Если мои надежды не напрасны, это пойдет на пользу лечению больных и исследовательской работе.
Нелсон Б. Шиллер
Для того, чтобы появилась эта книга, понадобилась помощь многих людей.
Работа над книгой началась благодаря интересу профессора Нелсона Шиллера к России и его готовности тратить время и силы на то, чтобы появилось современное руководство по эхокардиографии на русском языке. Работать в Калифорнийском Университете в Сан-Франциско мне позволила стипендия Американской кардиологической ассоциации на 1991/92 гг.
Я благодарен сотрудникам Лаборатории эхокардиографии Университета E. Foster и R. Redberg, G. Fazio, J. Jue, T. Winslow и M. Eisenberg, проявлявшим интерес к моей работе и активно помогавших своими советами.
Я выражаю искреннюю признательность своим первым учителям по эхокардиографии, врачу Михаилу Майскому и его жене Ирине, работающим сейчас в Бостоне, которые проделали большую работу по рецензированию этой книги.
Отдельно я хотел бы поблагодарить своего друга, Михаила Харитонова, аспиранта Стэнфордского Университета, за неизменное участие и помощь.
Книга издана за счет американской фирмы ACUSON. Я благодарен сотрудникам московского представительства фирмы за большую помощь в организации издания книги.
Свой труд над книгой «Клиническая эхокардиография» я посвящаю памяти отца, писателя Александра Марьянина (Фихмана).
Максим Осипов
Глава 1. Физические принципы ультразвуковой визуализации сердца
Ультразвук — это звук с частотой более 20000 колебаний в секунду (или 20 кГц). Скорость, с которой ультразвук распространяется в среде, зависит от свойств этой среды, в частности, от ее плотности. Скорость распространения ультразвука в тканях человека при температуре 37°С равна 1540 м/с. Звук имеет волновую природу и его распространение подчиняется таким же законам, что и процесс распространения света. Знание этих основных законов существенно для понимания принципиальных основ эхокардиографии.
Если плотность, структура и температура одинаковы по всей среде, то такая среда называется гомогенной. В гомогенной среде волны распространяются линейно. Различные среды обладают различными свойствами, из которых для нас особенно важен акустический импеданс. Акустический импеданс равен произведению плотности среды на скорость распространения в ней звука и характеризует степень сопротивления среды распространению звуковой волны. Скорость распространения ультразвуковой волны в тканях практически постоянна, поэтому в эхокардиографии акустический импеданс — лишь функция плотности той или иной ткани. Разные ткани: миокард, перикард, кровь, створки клапанов и т. д. — имеют разную плотность. Даже при незначительном различии плотностей между средами возникает эффект «раздела фаз» [interface]. Ультразвуковая волна, достигшая границы двух сред, может отразиться от границы или пройти через нее. При этом: 1) угол падения равен углу отражения; 2) из-за различий акустических импедансов сред угол преломления не равен углу падения.
Соотношение между углом падения (отражения) и углом преломления описывается формулой: n>1/n>2 = sin θ>2/sin θ>1, где n — акустический импеданс, t — угол между направлением распространения звуковой волны и перпендикуляром к границе фаз.
Чем меньше угол падения (т. е. чем ближе направление распространение звуковой волны к перпендикуляру), тем больше доля отраженных звуковых волн. Доля отраженного ультразвука определяется тремя факторами: 1) разностью акустического импеданса сред — чем больше эта разность, тем больше отражение; 2) углом падения — чем ближе он к 90°, тем больше отражение; 3) соотношением размеров объекта и длины волны — размеры объекта должны быть не менее 1/4 длины волны. Для измерения меньших объектов требуется ультразвук с большей частотой (т. е. с меньшей длиной волны).
Пространственная разрешающая способность метода [resolution] определяет расстояние между двумя объектами, при котором их еще можно различить. Например, частота 2,0 МГц дает разрешающую способность в 1 мм. Однако, чем выше частота, тем меньше проникающая способность ультразвука (глубина проникновения): тем легче происходит его затухание [attenuation]. Таким образом, важно найти оптимальную частоту, которая дает максимальную разрешающую способность при достаточной проникающей способности. В табл. 1 приведены значения «половинного затухания» для разных сред, т. е. расстояния, на которых ультразвуковые волны с частотой 2,0 МГц теряют половину своей энергии.