Космические двигатели будущего - страница 13
Известно, что электромагнитное излучение, к которому относится и видимый свет, оказывает давление на материальные тела. Соответственно этому излучающее тело испытывает импульс отдачи фотонов электромагнитного поля. Поэтому каждое направленно излучающее тело может являться фотонным двигателем. Реактивная тяга направленного излучения равна мощности излучения, деленной на скорость света, т. е. каждый 1 кВт излучаемой мощности создает тягу 3,3· 10>–7 кгс.
Простейшим фотонным двигателем может быть заэкранированный с одной стороны холодильник-излучатель. Поскольку в энергию струи электрореактивного двигателя переходит около 10 % энергии, вырабатываемой бортовой энергоустановкой, то при скорости истечения, равной 0,1 скорости света, тяга, создаваемая холодильником-излучателем, становится сравнимой с тягой двигателя.
Несмотря на относительную простоту фотонных двигателей, их нецелесообразно применять с любыми, используемыми в настоящее время источниками энергии, включая термоядерные. Обычно в энергию переходит лишь часть массы источника: для ядерных реакций деления — 0,5 %, для термоядерных — 0,15 %. Если в качестве рабочего тела использовать лишь фотоны, то одновременно с полезным грузом придется разгонять до конечной скорости и продукты реакции. Поэтому фотонные двигатели имеет смысл использовать лишь в сочетании с источниками энергии, в которых вся масса или по крайней мере ее большая часть преобразуется в энергию. Таким источником по современным представлениям может быть лишь реакция аннигиляции, т. е. взаимодействие частиц и античастиц.
Для синтеза античастиц (например, антипротонов) необходимы мощные ускорители, причем выход античастиц в реакции очень мал. Считается, что для получения энергии в 1 Дж, заключенной в антипротонах, потребуется затратить электроэнергии не менее 100 кДж. Таким образом, накопление сколь-нибудь значительного количества антивещества находится за пределами возможностей современной техники.
Другой проблемой, возникающей при реализации фотонных двигателей, является хранение антивещества. Поскольку материал конструкции ракеты является обычным веществом, то должен быть исключен всякий контакт антивещества со стенками баков. Поэтому антивещество может быть «подвешено» в электрических или магнитных полях.
Требования к системе теплосъема в фотонных двигателях будут чрезвычайно жесткими. Реализуемые в настоящее время системы теплоотвода, включая холодильник-излучатель, имеют массу не менее 0,01 кг на 1 кВт сбрасываемой мощности. В этом случае, даже если пренебречь другими составляющими ракеты, она будет иметь ускорение не более 2 · 10>–4 м/с>2, и разгон такой ракеты до скорости всего 10 км/с будет продолжаться более года.
Из всего сказанного следует, что создание фотонного двигателя дело чрезвычайно отдаленного будущего. Ряд исследователей подвергают сомнению рациональность и даже принципиальную возможность его создания, другие прямо относят фотонный двигатель к области научной фантастики.
ДВИГАТЕЛЬНЫЕ СИСТЕМЫ С ВНЕШНИМИ ИСТОЧНИКАМИ ЭНЕРГИИ
Выше были рассмотрены требования, предъявляемые к перспективным космическим двигательным системам автономного типа, и показано, как эти требования определяют направления развития автономных двигательных систем. В автономных системах энергия и масса, необходимые для создания тяги и разгона космического аппарата, находятся на самом аппарате. Поэтому прогресс в развитии таких двигателей связан с улучшением удельных энергетических характеристик, т. е. с увеличением количества энергии, запасенной на единицу массы рабочего тела.
Ситуация меняется, если источник энергии, с помощью которой создается тяга, находится вне аппарата. В этом случае указанная характеристика теряет смысл. Однако по-прежнему важно, какое количество энергии поступает в двигательную установку и насколько — поступающая энергия пригодна для разгона рабочего тела.
Если на время отвлечься от вопросов преобразования поступающей извне энергии в кинетическую энергию истекающего с высокой скоростью рабочего тела, основным фактором становится количество энергии, подводимой к двигательной установке в единицу времени. Отсюда следует, что характеристики двигательной установки космического аппарата не зависят от массы и удельных характеристик источника энергии, а определяются мощностью внешнего источника и эффективностью передачи энергии от источника в двигательную установку космического аппарата.