Крылья для Икара. Как решать изобретательские задачи - страница 10
МЭСЭМ
Для симметрии запишем С два раза (ведь другие буквы встречаются в этой записи по два раза):
МЭССЭМ
Возьмем теперь шесть кубиков. Пусть на каждом кубике будет только одна буква — М, Э или С. Расположим кубики в линию и начнем их перекладывать. Получится шесть симметричных комбинаций:
1. МЭССЭМ
2. ЭМССМЭ
3. СМЭЭМС
4. МСЭЭСМ
5. ЭСММСЭ
6. СЭММЭС
Первая формула соответствует уже знакомому нам электромагнитному расходомеру. А другие пять? По-видимому, это тоже расходомеры, у них те же основные части — поток жидкости, электроды, магнитная система. Но это уже какие-то другие расходомеры, необычные. Например, в конструкциях 3 и 6 жидкость находится снаружи.
Вот мы и «доигрались» в кубики: возникли новые приборы! Попробуем изобразить их схемы (фиг. 2). В конструкциях 3 и 6 жидкость движется снаружи прибора. Может такое быть? Вполне. Например, море за бортом корабля. Правда, прибор не измерит количества воды в море, но зато покажет скорость корабля: чем выше скорость, тем больше электродвижущая сила на электродах. Конструкция 6 обтекаема — это ее достоинство, но она имеет и серьезный недостаток: электроды расположены снаружи электромагнита, а самое «густое» магнитное поле — внутри электромагнита. В конструкции 3 электроды находятся внутри соленоида — такой прибор в десятки раз чувствительнее прибора по схеме 6. Когда впервые возникла идея «сыграть в кубики», были известны только схемы 1 и 6. Четыре другие оказались новыми! И не просто новыми, а имеющими новые полезные качества. Прибор по схеме 3 не только чувствительнее прибора 6, но и лучше охлаждается (магнитная система непосредственно соприкасается с водой), а это очень важно: можно усилить магнитное поле, сделать прибор еще более чувствительным.
м э с з м
т
1_
э м с м э
Ш>!
с м э м с
1Л.1
■ы
м с э с м
№
э с м с э
га
й~
с э м э с
'>1м-
Фиг. 2
Прибор по схеме 4 позволяет передвигать электроды по ширине потока — можно измерять скорость жидкости в разных точках. То же самое позволяет делать прибор по схеме 5, но в нем перемещаются не электроды, а магнитные силовые линии: они не вызывают завихрений в потоке, не искажают течения жидкости. Такой прибор не только точнее, но и лучше приспособлен к работе с агрессивными жидкостями.
В обычных расходомерах (схема 1) магнитная система находится снаружи трубы, стенки трубы могут внести помехи в работу прибора. А по схеме 2 все части прибора находятся внутри потока, показания прибора не зависят от материала, из которого сделана труба.
Что ж, теперь можно подвести итог: мы использовали предельно простой прием перестановки частей и оказалось, что этот прием позволяет получать новые изобретения. Попробуйте дать кому-нибудь задачу: «Вот электромагнитный расходомер. Он устроен так-то и так-то. Предложите приборы, основанные на том же принципе, но имеющие новые особенности». Вряд ли найдется много охотников решать эту задачу: очень уж она неопределенна и потому трудна.
Вот и получается, что один прием (всего один!) уже намного больше, чем ничего...
Впрочем, надо еще убедиться в том, что наш прием (перестановка частей) годится для преобразования многих технических объектов, а не только электромагнитного расходомера.
Сыграем теперь в «кубики» с магнитным фильтром. Это очень интересное изобретение. Раньше для очистки горячего газа от пыли использовали фильтры, сделанные из многих слоев металлической ткани. Газ свободно проходил сквозь ткань, а пыль застревала в ячейках ткани. Такие фильтры имели, однако, огромный недостаток: они быстро забивались пылью, переставали пропускать газ, а освободить их от пыли было очень трудно. Приходилось подолгу продувать фильтр чистым воздухом в противоположном направлении, чтобы выбить застрявшие в ткани частицы пыли. И вот был изобретен магнитный фильтр (авторское свидетельство № 156 133). Между полюсами мощного магнита или электромагнита расположены ферромагнитные частицы — крупинки металла. Они образуют пористую массу, через которую пропускают запыленный газ (фиг. 3). Пыль застревает в порах, газ проходит. Освободить такой фильтр от пыли очень легко: достаточно убрать магнит или выключить электромагнит. Фильтр рассыплется, ферромагнитные частицы и пыль упадут вниз. Затем надо снова создать магнитное поле, ферромагнитные частицы займут свое место, а пыль останется внизу. Можно несколько раз повторить эту операцию, стряхивая пыль.