Квантово-мистическая картина мира. Структура реальности и путь человека - страница 7
>2. Возникает интерференция, то есть взаимное влияние на результирующую вероятность обеих компонент вектора состояния. В этом случае говорят, что мы имеем дело с суперпозицией состояний.
Отметим, что суперпозиция — это не смесь двух классических состояний (немного одного, немного другого), это нелокальное состояние, в котором электрона, как локального элемента классической реальности, нет. Лишь в ходе декогеренции[11], вызванной взаимодействием с окружением (в нашем случае — экраном), электрон возникает в виде локального классического объекта.
Теперь — короткий экскурс в историю подобных опытов. Впервые интерференцию света на двух щелях наблюдал английский ученый Томас Юнг в начале XIX века. Затем, в 1926–1927 годах К. Д. Дэвиссоном и Л. X. Джермером в экспериментах с использованием монокристалла никеля была открыта дифракция электронов — явление, когда при прохождении электронами через множество «щелей», образованных плоскостями кристалла, наблюдаются периодические пики в их интенсивности. Природа этих пиков совершенно аналогична природе пиков в двухщелевом эксперименте, а их пространственное расположение и интенсивность позволяют получить точные данные о структуре кристалла. Этим ученым, а также Д. П. Томсону, который независимо от них также открыл дифракцию электронов, в 1937 году была присуждена Нобелевская премия.
Затем подобные опыты многократно повторялись, в том числе и с летящими «поштучно» электронами, а также с нейтронами и атомами, и во всех них наблюдалась предсказываемая квантовой механикой интерференционная картина. Впоследствии были проведены эксперименты с более крупными частицами. Один из таких опытов (с молекулами тетрафенилпорфирина) был проведен в 2003 году группой ученых из Венского университета во главе с Антоном Цайлингером[12]. В этом классическом двухщелевом эксперименте было четко продемонстрировано наличие интерференционной картины от одновременного прохождения очень большой по квантовым меркам молекулы через две щели.
Наиболее впечатляющий на сегодняшний день эксперимент был недавно проведен той же группой исследователей[13]. В этом исследовании пучок фуллеренов (молекул C>70, содержащих 70 атомов углерода) рассеивался на дифракционной решетке, состоящей из большого числа узких щелей. При этом имелась возможность вести контролируемый нагрев летящих в пучке молекул C>70 посредством лазерного луча, что позволяло менять их внутреннюю температуру (иначе говоря, среднюю энергию колебаний атомов углерода внутри этих молекул).
Теперь вспомним, что любое нагретое тело, в том числе молекула фуллерена, испускает тепловые фотоны, спектр которых отражает среднюю энергию переходов между возможными состояниями системы. По нескольким таким фотонам можно, в принципе, с точностью до длины волны испускаемого кванта определить траекторию испустившей их молекулы. Отметим, что чем выше температура и, соответственно, меньше длина волны кванта, тем с большей точностью мы могли бы определить положение молекулы в пространстве, а при некоторой критической температуре точность окажется достаточна для определения, на какой конкретно щели произошло рассеяние.
Соответственно, если бы кто-то окружил установку Цайлингера совершенными детекторами фотонов, то он, в принципе, мог бы установить, на какой из щелей дифракционной решетки рассеялся фуллерен. Другими словами, испускание молекулой квантов света дало бы экспериментатору ту информацию для разделения компонент суперпозиции, которую нам давал пролетный детектор. Однако никаких детекторов вокруг установки не было. Как и предсказывала теория декогеренции[14], их роль сыграла окружающая среда.
В эксперименте было обнаружено, что в отсутствии лазерного нагрева наблюдается интерференционная картина, совершенно аналогичная картине от двух щелей в опыте с электронами. Включение лазерного нагрева приводит сначала к ослаблению интерференционного контраста, а затем, по мере роста мощности нагрева, к полному исчезновению эффектов интерференции. Было получено, что при температурах T < 1000K молекулы ведут себя как квантовые частицы, а при