Квантовые миры и возникновение пространства-времени - страница 8

стр.

Никому никогда не приходило в голову рассуждать об «интерпретациях классической механики» – классическая механика совершенно прозрачна. Существует математический аппарат, описывающий координаты, скорости и траектории, и да, смотрите: вот камень, который фактически может двигаться под действием законов, предписываемых этим аппаратом. В классической механике не существует проблемы измерения как таковой. Состояние системы описывается ее координатами и скоростью, и если мы хотим измерить эти показатели – то просто берем и измеряем. Естественно, измерить показатели системы можно небрежно или грубо, и в результате получить неточные результаты либо изменить саму систему. Однако это отнюдь не данность: достаточно проявить аккуратность – и мы точно измерим все, что можно узнать о системе, не изменив ее каким-либо заметным образом. Классическая механика подразумевает ясные и недвусмысленные отношения между тем, что мы видим, и тем, что описывает теория.

Квантовая механика, при всей ее успешности, ничего подобного не предлагает. Загадку, скрытую в самом сердце квантовой реальности, можно резюмировать так: то, что мы видим, наблюдая мир, похоже, фундаментально отличается от реального положения дел.

⚪ ⚪ ⚪

Поговорим об электронах – элементарных частицах, обращающихся вокруг атомного ядра. Именно из их взаимодействий складывается вся химия и, следовательно, практически все интересное, что происходит вокруг вас в настоящий момент. Как и в случае с камнем, можно игнорировать некоторые конкретные свойства электрона, например его спин и тот факт, что у него есть электрическое поле. (В самом деле, мы могли бы даже продолжить пример с камнем – ведь камень является квантовой системой в той же степени, что и электрон, – однако, переходя к примеру с субатомной частицей, проще учитывать, что характерные отличительные черты квантовой механики со всей ясностью просматриваются именно при изучении сверхмалых объектов.)

В отличие от ситуации с классической механикой, где состояние системы можно описать в контексте ее координаты и скорости, природа квантовой системы куда менее конкретна. Рассмотрим электрон в его «естественной среде обитания», то есть когда он обращается вокруг атомного ядра. При слове «обращается» вы, вероятно, вспомните одно из тех наглядных пособий, которые, несомненно, не раз вам попадались, где орбита электрона изображается более или менее похожей на планетарную орбиту в Солнечной системе. У электрона (могли бы подумать вы) есть координата, скорость, и с течением времени он носится вокруг ядра, расположенного в центре атома, по круговой или, может быть, эллиптической орбите.

Квантовая механика подсказывает, что все несколько иначе. Можно измерить значения координаты или скорости электрона (но только по отдельности), и если мы окажемся по-настоящему аккуратными и талантливыми экспериментаторами, то получим ответы. Но то, что предстанет перед нами в результате такого измерения, не есть точное, полное, объективное состояние электрона. Действительно, те конкретные результаты измерений, которые мы получим, нельзя предсказать с полной уверенностью, и в этом отношении квантовая механика разительно отличается от классической. Лучшее, что получится сделать, это предсказать, с какой вероятностью мы увидим электрон в любом конкретном месте или двигающимся с конкретной скоростью.



Следовательно, классическое представление о состоянии частицы, «ее координате и скорости» в квантовой механике заменяется чем-то совершенно не вписывающимся в наш обыденный опыт: облаком вероятностей. Для электрона в атоме это облако более плотное ближе к центру и рассеивается по краям. В максимально плотной области вероятность встретить электрон является наивысшей: там, где облако становится разреженным практически до полного исчезновения, вероятность встретить электрон также исчезающе мала.

Такое облако часто называют волновой функцией, поскольку оно может колебаться подобно волне, по мере того как со временем изменяется наиболее вероятный результат измерения. Волновая функция обычно обозначается греческой буквой «пси» (Ψ). Для каждого возможного результата измерения, например координаты частицы, волновая функция позволяет присвоить конкретное число, называемое