Логика и аргументация - страница 10

стр.

С другой стороны, выдвижение на первый план специфических правил рассуждения в отдельных областях науки может привести к ослаблению взаимопонимания между учеными, дифференциации логики на обособленные теории, утрате связи между ними и общей логикой, не говоря уже о том, что опора на привычное и повторяющееся не может гарантировать правильности и обоснованности форм рассуждения.

Взгляд на логику как на технологию мышления также имеет ряд привлекательных черт хотя бы потому, что на практике мы больше всего нуждаемся именно в том, чтобы умело пользоваться правилами рассуждений, рекомендациями, как эффективно находить аргументы (посылки для заключений), строить и проверять гипотезы, - словом, всем тем, что характеризуют как искусство мышления или догадок. Но здесь снова возникает вопрос, почему технология логики применима к реальному миру человека, обусловлена ли она психологическими его особенностями или же свойствами и отношениями той области мира, о которой рассуждают. Те же самые вопросы можно адресовать сторонникам чисто формального взгляда на логику, которые сводят ее задачу к исследованию формальных отношений между суждениями.

Выход из возникших трудностей относительно природы логики как науки, объективного характера ее законов, принципов и методов в конечном счете следует искать в том, что они отображают основные, постоянно встречающиеся связи и отношения, существующие в реальном мире. Именно поэтому логика и может применяться для её изучения. Но реальный мир, его специфические закономерности служат предметом исследования конкретных естественных, общественных и технических наук. Через анализ понятии, суждении и умозаключении, применяемых в этих науках, логика играет свою роль - теоретического инструмента, служащего для контроля правильности и обоснованности рассуждении и тем самым способствующего поиску и доказательству истины.

Прикладная роль логики в конкретных науках не ограничивается только непосредственным анализом рассуждений. Её методы широко используются в методологии научного познания для анализа таких форм научного мышления, как гипотеза, закон, теория, а также раскрытия логической структуры объяснения и предсказания, как важнейших функций любой науки. Это направление прикладных исследований в последние десятилетия положило начало логике науки, в которой понятия, законы и методы логики успешно применяются для изучения возникающих в научном познании не только чисто логических, но и методологических проблем.

1.4. Понятие о логической форме и правильности мышления

Изучая способы образования и определения понятий, построения суждений и умозаключений, логика неизбежно должна абстрагироваться, отвлекаться от их конкретного содержания. В противном случае она была бы не в состоянии выделить те общие черты, которые характерны для всех понятий, суждений и умозаключений. Так, например, умозаключения: "Если Кай - человек, то он смертей" и "Если треугольник равнобедренный, то углы при его основании равны", всегда приводят к истинным результатам, когда их посылки истинны. Хотя содержание этих умозаключений весьма отлично друг от друга, но форма рассуждения в обоих случаях одинакова. Но чтобы выявить эту логическую форму в чистом виде, необходимо абстрагироваться (отвлечься) от конкретного содержания суждений или мыслей, оставить это в стороне как нечто не имеющее прямого отношения к форме. Для этого лучше всего подходит обозначение понятий и суждений с помощью символов и формул, аналогично тому, как поступают в элементарной алгебре, когда выражают с их помощью арифметические утверждения. Подобными символами в очень ограниченной мере пользовался уже Аристотель и некоторые его последователи.

С возникновением математической логики, которую часто называют символической, использование символов и формул приобрело систематический характер, а в связи с этим в значительной мере возросло и применение математических методов в логике. Прежняя логика была не в состоянии выявить логическую форму рассуждений, поскольку для этого необходимо было построить формализованные языки, с помощью которых можно было бы свести рассуждения на естественном языке к преобразованию формул на специально созданном искусственном логическом языке.