Математический аппарат инженера - страница 27
в) Является ли граф однородным (если нет, то добавлением ребер преобразуйте его в однородный)?
г) К какому типу относится рассматриваемый граф (простой, мультиграф, псевдограф)?
д) Запишите матрицу смежности графа.
7. Пометьте вершины и ребра орграфа (см. рис. 8, а) буквами или цифрами и выполните следующие упражнения:
а) Запишите все ребра как неупорядоченные пары вершин и отметьте параллельные ребра.
б) Определите положительные и отрицательные степени всех вершин и соответственно их суммы (что можно сказать об этих суммах?).
в) Запишите матрицу инцидентности графа.
8. Докажите, что кубический граф имеет четное число вершин. Обобщается ли свойство четности вершин на однородные графы высших степеней?
9. Постройте графы, соответствующие следующим матрицам смежности:
- 59 -
Охарактеризуйте полученные графы и запишите для них матрицы инцидентности.
10. Расположите на плоскости четыре вершины, как в графе на рис. 11, а, но обозначения вершин v>2 и v>3 взаимно переставьте. На множестве обозначенных таким образом вершин постройте граф, изоморфный исходному.
11. Выполните следующие упражнения с графом (см. рис. 11, а):
а) Найдите все ориентированные маршруты от вершины а к вершине е.
б) Найдите все пути и простые пути от вершины а к вершине е.
в) Определите все простые контуры графа.
13. В орграфе (см. рис. 8, а) измените направления дуг таким образом, чтобы он преобразовался в ациклический граф. Постарайтесь найти общее правило такого преобразования.
14. Для графа (см. рис. 12) простойте:
а) часть, состоящую из четырех вершин и пяти ребер;
б) суграф с четырьмя, пятью и шестью ребрами.
15. Два графа G' = (V', E') и G" = (V", E") называются непересекающимися, если V' ∩ V" = ∅ и E' ∩ E" = ∅. Постройте непересекающиеся подграфы графа рис. 12, содержащие по три вершины.
16. Постройте блоки, на которые разбивается сепарабельный граф (см. рис. 14, а).
17. Постройте все различные деревья с восьмью вершинами (их должно быть 23).
18. Постройте все покрывающие деверья и их дополнения для графа (см. рис. 11, а). Сколько имеется существенно различных деревьев?
19. Постройте покрывающий лес несвязанного графа (см. рис. 13).
20. Постройте все прадеревья оргарфа (см. рис. 8, а) с корнем в вершине d.
21. Рассматривая компоненты несвязанного графа (см. рис. 13) как блоки, постройте соответствующий сепарабельный граф. Сколько возможно различных вариантов (без учета изолированной вершины G>2)?
22. Покажите, что приведенные на рис. 21 графы неплоские. Какое минимальное число ребер необходимо удалить из графа на рис. 21, а, чтобы он превратился в плоский? Сколько имеется различных способов такого превращения с точностью до изоморфизма?
23. Покажите, что графы на рис. 21, а и в гомеоморфные.
- 60 -
24. Докажите, что при удалении ребра граф остается связным тогда и только тогда, когда это ребро содержится в некотором цикле.
25. Докажите, что (p, p — k) — граф при k ≥ 2 всегда является несвязным и состоит не менее, чем из k компонент.
26. Изобразите все неизоморфные простые графы с пятью вершинами (изолированные вершины допускаются), содержащие три, пять восемь, девять и десять дуг (всего их должно быть 14).
27. Покажите, что число ребер полного графа равно 1/2 p(p — 1), где p — число его вершин.
28. Найдите общее выражение для числа ребер, при котором граф с p вершинами может быть несвязным.
29. Покажите, что любое дерево можно представить как двухдольный граф. Какие деревья являются полными двудольными графами?
Рис. 21. Неплоские графы.
30. Докажите: а) кубический граф имеет точку сочленения тогда и только тогда, когда он содержит мост; б) наименьшее число вершин в кубическом графе, имеющем мост, равно 10.
31. Постройте граф, изоморфный графу Понтрягина-Куратовского (см. рис. 19, б), в котором внешние ребра образуют шестиугольник. Рассматривая его как подграф полного шестиугольника, нарисуйте дополнение этого подграфа. Укажите характерные свойства полученного дополнения.
32. Покажите, что следующие свойства дерева Т равносильны:
а) Т связно и не содержит циклов;
б) Т не содержит циклов и имеет p — 1 ребер, где p — число вершин;