Мозг. Инструкция пользователя - страница 7

стр.

2.1. Нейроны

По ряду оценок, тело человека среднего роста и веса состоит из 37 тысяч миллиардов клеток. Независимо от того, хрупкая ли это старушка или крепкий молодой парень, на их создание пошло весьма внушительное количество биологических кирпичиков.

Однако во всех частях этой сложной конструкции из клеток костей и крови, печени и кожи наличествуют непременно клетки особой группы, распределенной по всему телу, – нейроны. Кирпичики, составляющие нервную ткань, обладают удивительными свойствами. Они могут испытывать электрическое возбуждение и, включаясь в сеть, состоящую из бесконечного количества миллиардов соединений, передают электрические импульсы и химические реакции на сотни километров в течение миллисекунды.

Считается, что в мозге примерно 86 миллиардов нейронов[3], которые сопровождают человека от рождения до смерти, в отличие от других клеток. Большинство нейронов живут долгую жизнь вместе со своим хозяином [см. стр. 230]. Передача информации в виде электрохимических реакций по чрезвычайно запутанной сети клеток мозга позволяет читать и понимать этот текст в данную минуту. Эта же сеть создает в нашей голове память, порождает различные идеи, позволяет выразить эмоции и отвечает за множество разных проявлений человеческой личности.

Центральная часть нейрона, его тело, которое называется сома, имеет бесконечно крошечные размеры (самый маленький в диаметре имеет 4 микрона, то есть 4 миллионных части метра), но при этом клетка может растягиваться на несколько сантиметров, ее отростки превышают размер ядра в десятки тысяч раз. Эти отростки, протягивающиеся на огромные, по сравнению с размерами ядра, расстояния, именуются аксонами. Каждый нейрон имеет только один аксон, и по аксону, как по проводу, информация передается вовне нейрона, к другим нейронам. От другого нейрона к аксону тянется другой отросток, более короткий, дендрит: у каждого нейрона таких дендритов много, они имеют разветвления и, как антенны-приемники, считывают информацию и направляют ее внутрь клетки.



Нейроны могут принимать самые различные формы, каковых насчитывается более двухсот видов, но основная разница между типами нейронов состоит в роли, которую они играют в церебральной сети. Сенсорные нейроны (они называются также афферентными, то есть «передающими в центр») получают сигналы от различных органов, таких как глаза, или поверхностных тканей, например кожи, и передают их в центральную нервную систему.

Двигательные нейроны (еще их называют эфферентными, что означает «те, что проводят сигнал») передают приказы от нервной системы к различным периферийным органам, вплоть до пальцев ног, по позвоночному столбу. Интернейроны, то есть все остальные, осуществляют чудо мышления посредством невероятно сложной системы сети внутренних связей. В мозге Homo sapiens количество синапсов, ответственных за прохождение сигналов, превышает любое воображение. Синапс представляет собой терминаль-трансмиттер (передатчик), соединенный с терминалем-реципиентом (приемником) через бесконечно крошечное внеклеточное пространство, именуемое синаптической щелью.

Нейроны общаются между собой посредством молекулярных цепочек, нейротрансмиттеров [см. стр. 36], которые приходят в движение по команде клетки. Команда на потенциальные действия приходит в виде изменений электрического напряжения, за тысячные доли секунды высвобождающих молекулы веществ-нейротрансмиттеров (например, дофамина, серотонина или норадреналина) и направляющих их к клетке-приемнику. Таким образом, когда нейрон меняет свой электрический потенциал, он посылает сообщение соседнему нейрону. Это сообщение либо приводит последний в возбуждение, в свою очередь, либо, наоборот, успокаивает и создает «режим тишины».

На эту систему передачи информации, уже достаточно сложную, накладываются нейронные колебания, или нейронные осцилляции, более известные как мозговые ритмы.

Эти колебания имеют регулярный характер и разную частоту (измеряемую в герцах, то есть в количестве колебаний в секунду) и возникают в разных областях мозга, в зависимости от его активности, то есть в границах от глубокого сна до крайнего возбуждения. Эти осцилляции были открыты в 90-х годах прошлого века благодаря появлению такого прибора, как энцефалограф.