Мозг напрокат. Как работает человеческое мышление и как создать душу для компьютера - страница 23
Если мы захотим усовершенствовать наше устройство, то, оглядываясь на мозг человека, можем понять, что у нас в запасе — множество «эволюционных приемов». Например:
— Можно заняться топологией устройства. К примеру, расположить датчики на плоскости (сенсорный слой) и сгруппировать их по признаку переносимой ими информации (звуковой, зрительной и т. п. Далее разместить нейроны памяти «слоем коры» над ними и охватить связями преимущественно те зоны, над которыми они находятся, придав тем самым памяти деление на предметные области).
— Нейронам памяти можно дать возможность иметь связи между собой, позволив им включать память в картину текущего представления и тем самым, изменив распознавание, сделать его более устойчивым к стереотипным ситуациям.
— Можно надстроить более высокие слои памяти, которые позволят распознавать и запоминать более сложные, «абстрактные» конструкции.
— Можно ввести механизм импринтинга — когда по какому-то набору признаков будет распознаваться некий объект, ситуация, состояние, и будет осуществляться их привязка к определенным наборам эмоций и рефлексов (при этом инстинкт будут направлен не на те признаки, которые вызвали срабатывание импринтинга, а на зафиксированное памятью явление, распознаваемое по дополнительным признакам, которые изначально отсутствовали).
— Можно использовать синхронизированную импульсную активность нейронов, которая позволит реализовать «голографическую память» и применить новые способы «узнавания».
— Можно использовать для передачи информации между нейронами не только существующие связи, но и ввести некие управляющие сигналы, доступные сразу всем нейронам «мозга» автомата, и с их помощью реализовать, например, работу «регулятора».
— Можно увеличить количество эмоций, сделать их картину значительно более сложной.
— Можно ввести «промежуточные ощущения», которые будут формироваться и датчиками и памятью, и сделать возможным процесс «фантазии».
— Можно ввести параметр «сила эмоции» и учитывать его при «запоминании».
В общем, нет предела совершенству...
Вообще-то, используя такой механизм, можно создавать устройства, применимые в любых сферах человеческой деятельности. Что особо приятно, так это то, что совершенно необязательно, имея устройство с начальной матрицей рефлексов и инстинктов, «воспитывать» его каждый раз с нуля. Имея уже обученное устройство со сформированной памятью, его можно просто копировать. Получать же набор удачных рефлексов и инстинктов можно на компьютерах, моделируя естественный отбор и мутации. Вот уж действительно достойная задача для суперкомпьютеров!
Описанную конструкцию с некоторыми оговорками можно назвать одной из разновидностей персептрона. Персептрон — нейронная сеть, состоящая изходных, ассоциативных и реагирующих элементов, с переменной матрицей взаимодействия, определяемой последовательностью прошлых состояний активности сети. Термин был введен Фрэнком Розенблаттом в 1957 году. Ему же принадлежит первая реализация в виде электронной машины «Марк-1» в 1960 году. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» — первым в мире нейрокомпьютером (Rosenblatt, 1962).
Сам принцип, когда новый опыт изменяет структуру нейронной сети, называется «обучение с подкреплением». В нашем случае система подкрепления — это эмоции и характер их участия в формировании памяти. «Регулятор» можно трактовать как систему управления подкреплением.
Моделирование мозга
В предыдущей главе было описано несложное устройство, память которого фиксирует происходящее с учетом изменения эмоционального состояния. Эта же память формирует поведение такого автомата. На таком простом примере удобно проследить основную идею того, как наличие эмоций формирует память, а та диктует определенное поведение в неких ситуациях, то есть, иначе говоря, то, как формируются инстинкты. На простой модели также хорошо видно, как появление новых или изменение существующих связей нейронов, замкнутых на эмоции, приводит к появлению новых инстинктов. Я думаю, не так сложно самостоятельно, на примере устройства из предыдущей главы, разобраться также с тем, как работает механизм мутаций и естественного отбора.