Мысли о мыслящем. О частной реализации концептуального подхода к опыту экзистенции - страница 13

стр.

.

Однако принимать решения необходимо — и в повседневной практике, и при построении научных теорий, в обоих случаях допуская возможный риск их ошибочности. Стивен Хокинг, говоря о научных теориях, отмечал: «Любая физическая теория всегда носит временный характер в том смысле, что является всего лишь гипотезой, которую нельзя доказать. Сколько бы раз ни констатировалось согласие теории с экспериментальными данными, нельзя быть уверенным в том, что в следующий раз эксперимент не войдет в противоречие с теорией. В то же время любую теорию можно опровергнуть, сославшись на одно-единственное наблюдение, которое не согласуется с ее предсказаниями»[16]. При этом теория, по мнению Хокинга, не должна претендовать на подлинное познание реальности: «…Физические теории являются всего лишь создаваемыми нами математическими моделями, вследствие чего вообще не имеет смысла говорить о соответствии теории и реальности. Теории следует оценивать лишь по их способности предсказывать наблюдаемые явления»[17].

Впрочем, не все ученые с этим согласны. Роджер Пенроуз (ставший недавно нобелевским лауреатом) в отношении математической основы физики придерживается воззрения в духе платонизма: «Я не скрываю, что практически целиком отдаю предпочтение платонистской точке зрения, согласно которой математическая истина абсолютна и вечна, является внешней по отношению к любой теории и не базируется ни на каком “рукотворном” критерии; а математические объекты обладают свойством собственного вечного существования, не зависящего ни от человеческого общества, ни от конкретного физического объекта»[18]. Подобные взгляды, видимо, разделял и Генрих Герц: «Трудно отделаться от ощущения, что эти математические формулы существуют независимо от нас и обладают своим собственным разумом, что они умнее нас, умнее тех, кто открыл их, и что мы извлекаем из них больше, чем было в них первоначально заложено»[19].

С другой стороны, Гейзенберг предостерегал от чрезмерного увлечения формальной стороной научного познания: «Математика — это форма, в которой мы выражаем наше понимание природы, но не содержание. Когда в современной науке переоценивают формальный элемент, совершают ошибку, и притом очень важную...»[20]. А Эйнштейн однажды иронично заметил: «Как ни странно, можно математически вполне овладеть предметом, так и не разобравшись в существе вопроса»[21].

Действительно, с помощью математики можно доказать едва ли не все что угодно. Но где гарантия, что математически описываемые процессы будут по-прежнему соответствовать этому описанию на всем диапазоне возможных значений своих исходных параметров (пространственных, временных и т. д.)[22]? Ее довольно сложно обеспечить, если в первую очередь ищется математический аппарат описания, а уже после решается, какой физический смысл следует придать входящим в него математическим величинам. Но именно так зачастую и происходит в современной физике[23].

Самодостаточность и мощь инструментария математики могут создавать иллюзию реальности математических конструктов, даже если за ними в действительности не стоит никаких физических объектов. Тут можно провести аналогию с вербальными конструкциями. Я вполне могу написать: «Слон сидел на ветке возле своего гнезда». Это будет грамматически правильное предложение, состоящее из общеупотребимых слов и даже имеющее определенный смысл, но оно не будет соответствовать чему-то реальному. Примерно так может обстоять дело и с математикой. Она заимствует базовые понятия (числá, операции, геометрического объекта) из окружающего мира — это «слова» ее «языка», — устанавливает правила их употребления — свою «грамматику» — и на основе этого строит осмысленные «предложения». Однако нельзя полностью гарантировать, что результат не будет подобен предложению, приведенному выше. Например, в отдельных случаях «слоном, сидящим на ветке» может оказаться понятие бесконечности (подробнее об этом будет говориться в одной из следующих глав). Разумеется, «язык» математики более строг, чем обыденный, поэтому возможности им вольно оперировать, приводящие к абсурдным заключениям, не столь велики. Тем не менее на практике иногда приходится «ломать» математическую логику, вводя ограничения, запрещенные операции; встречаются и неразрешимые математические задачи. Так что слишком превозносить априорный характер математического знания — по примеру Юма и Канта — не следует.