Нанонауки. Невидимая революция - страница 23
с несколькими активными участками, и активность этих участков управляется другими молекулами — иначе говоря, такой энзим «срабатывает» по команде, которой может служить молекулярный или электрический сигнал — что немного похоже на срабатывание электронного реле. В 1970 году Жан Моно в своей работе о «Случайности и необходимости» [Le Hasard et la Nécessité] писал, что вызов, брошенный физикам, состоит в том, что минимальная масса электронного реле примерно равна 10>-2 г, а масса энзима, способного выполнять те же действия, что и реле, порядка 10>-17 г, то есть в миллион миллиардов раз меньше! Тем самым подчеркивались возможности тогдашних сверхминиатюрных устройств, а им было далеко до тех чудес, которыми мы располагаем сегодня. В то время и думать никто не смел о машинах, по размеру меньших, чем макромолекулы. Да и сами макромолекулы казались чересчур крошечными, чтобы на их основе создавать какие-то работающие устройства. Моно бросил ученым вызов: он говорил, что вот есть молекула, она вполне материальна, устойчива во времени (существует достаточно долго) и имеет определенную протяженность в пространстве — перечисленных качеств довольно, чтобы эту молекулу превратить в машину. Но как? Идеи Моно казались абсолютно безосновательными. Но в 1990-е годы родилась иная мысль — почему бы не перевернуть порядок создания машины? То есть начинать не с большого объема вещества, из которого понемногу удаляют все лишнее, в итоге получая миниатюрную машину, а наоборот — взять несколько атомов и строить из них машину, добавляя по мере необходимости новые атомы. Вот на этой идее и строится некая новая технология — нанотехнология. Иначе этот перевернутый порядок формирования машины можно назвать «восходящим», и настоящая глава посвящена рассмотрению первого этапа создания двигателей и механизмов из молекулярных комплексов: мы с самого начала «остаемся на дне» шкалы величин, чтобы понять, как обращаться с одним-единственным атомом или молекулой, в которой не более считаных десятков атомов. Мы будем учиться манипулировать частицами много меньше биологических объектов.
Благо, что у нас есть орудие, открывающее врата в этот рай, да еще и предлагающее технические способы обычного технологического порядка, — это изобретенный в 1981 году туннельный микроскоп. Впервые изображение одиночной молекулы было получено в 1957 году, на электронном микроскопе (см. Приложение I). Но туннельный микроскоп позволит не только вывести на экран изображение одной молекулы, но и прикоснуться к этой молекуле иглой микроскопа. Независимость молекулы, то есть ее существование в качестве самостоятельной материальной сущности, превратилась из умозрительного представления в факт, который можно использовать. С тех пор, собственно, и началось приключение по имени нанотехнология. Это она позволяет создавать устройства много меньших размеров, чем все то, что изготавливалось до сих пор: речь о приборах величиной порядка нанометра и допусках точности в десятые доли нанометра.
Нанотехнология, следовательно, — новый этап многовековой эпопеи, именуемой познанием материи или наукой о веществе, а не просто еще одна фаза развития материаловедения.
Прикосновение иглы туннельного микроскопа к молекуле превращает ее в самую малюсенькую машину из всех, какие только возможны. Однако с самого начала понятие молекулы предлагалось как ответ на задачу определения веществ. По определению, молекула есть самая маленькая частица соответствующего вещества. О том, что такое молекула, ученые всегда много и горячо спорили. Джованни Альфонсо Борелли (1608–1679) мыслил вещество — тот или иной его вид (металл, газ, жидкость) — как нагромождение «маленьких машин» (machinulae), причем эти «машинки» то сближаются, то убегают друг от друга. Ученых XVII века мучили неудобства господствовавшего в то время учения Аристотеля, который учил, что все вещество состоит из четырех стихий (лат. «элементы»): земли, воды, огня и воздуха. Среди тех, кого не устраивали идеи Аристотеля, был и нидерландский врач и математик Исаак Бекман, переписывавшийся со многими своими учеными современниками. А еще он регулярно вел научный дневник, который прилежно заполнял размышлениями и описаниями своих экспериментов. 14 сентября 1620 г. он записал, что после деления дозы лекарства пополам обе полудозы сохранили целебные свойства. Последующие деления показали то же, но, рассуждал Бекман, если делить дозу надвое вновь и вновь, наверное, настанет такое время, когда крошечный осколок утратит свои свойства. Бекман назвал эту мельчайшую частичку, сохраняющую целительные свойства, «минимумом». Этот «минимум» означал то же, что и нынешний термин «молекула». Бекман думал, что «минимум» состоит из атомов, которые сделаны из «первичного вещества», хотя и отличаются друг от друга своими «формами». Он при этом уточнил, что можно различить по крайней мере четыре типа атомов (что соответствует четырем стихиям), хотя их может быть и больше (сегодня мы знаем о ста восемнадцати элементах).