Нанонауки. Невидимая революция - страница 33
Удача нам улыбнулась: обследовав несколько таких пробелов, мы заметили одну молекулу, сильно отошедшую от первоначального положения, — по сравнению с другими молекулами это бросалось в глаза. И она поворачивалась — как малюсенькая юла диаметром 1,2 нм. Для вращения нужна энергия — скорее всего, хватало тепловой энергии поверхности, температура которой равнялась комнатной. В этом опыте мы впервые получили изображение вращения одиночной молекулы. Восторг скоро прошел, и мы принялись терпеливо выяснять параметры вращения и определять факторы, влияющие на этот процесс.
После нескольких недель экспериментов Джим Гимжевски и его товарищ Рето Шлиттлер показали, что можно по своей воле и раскручивать молекулу, и останавливать ее вращение, — манипулируя иглой микроскопа, конечно. И мы даже подобрали объяснение физики этого явления. В сущности, такая молекула-колесико ведет себя как шестеренка в коробке передач. Если молекула — на самом краю щели (или ямы), то четыре из ее шести лапок сцеплены с такими же лапками соседних молекул, и наша молекула крутиться не станет. Но, если ее подтолкнуть, сдвинув на 0,25 нм, то она окажется посередине щели, и соседок у нее не останется. Значит, четыре прежде занятые лапки теперь освободятся и она повернется сама — надо только, чтобы было куда повернуться. Но если слишком просторно, на вращение может наложиться процесс боковой диффузии — и он, скорее всего, затормозит молекулу.
Чтобы разобраться в режиме вращения такой молекулы, мы регистрировали вариации туннельного тока, устанавливая иглу в том месте, через которое проходит одна из лапок вращающейся молекулы. И мы заметили, что импульсы тока, отображаемые на экране осциллографа, пляшут в том же ритме, в котором крутится наша молекула. К несчастью, при комнатной температуре она очень уж разгонялась, и толком разобрать, что с нею творится, было почти невозможно. Вместе с коллегами из Берлинского университета мы синтезировали другую молекулу, на этот раз с шестью длинными зубчиками, — получилась настоящая молекула-шестеренка величиной в 1,2 нм. Пометив химически один зуб шестерни и слегка изменив ее строение, мы стали наблюдать за вращением молекулы: она поворачивалась рывками, шаг за шагом, всякий раз описывая дугу в 60° и продвигаясь вдоль своего рода кремальеры — длинной рейки с зубчиками, тоже состоящей из молекул, только других.
В 2001 году мы с Франческой Мореско и Герхардом Мейером повторили эксперимент с фталоцианином — молекулой с четырьмя лапками, которая, если ее подталкивали иглой, смещалась — и фиксировали в режиме реального времени колебания тока в цепи между иглой и поверхностью. Теперь на экране осциллографа размах колебаний был больше. Мы легко определили период этих колебаний — он оказался равен 0,25 нм, а означало это то, что молекула передвигается по медной поверхности от площадки к площадке. Большое колебание не было сплошным: внутри большого импульса заметны были флуктуации меньшей амплитуды. Эти меньшие колебания удалось увязать с попеременным движением «передних» лапок — тех, что были направлены в сторону перемещения молекулы («задние» лапки удерживала игла)! Если молекулу толкнуть, она сдвигается на манер насекомого, ползущего по гладкой поверхности: сначала деформируется одна из ее передних лапок, потом — вторая. Эти деформации слегка искажают электронную структуру молекулы, а потому ток, текущий в цепи, образованной поверхностью, молекулой и иглой, меняется в том же ритме, в котором молекула «перебирает передними лапками». Чтобы занять соседнюю площадку, молекула сначала вытягивает одну лапку, потом тянет за ней другую, а не деформирует обе передние лапки сразу — иначе говоря, молекула как бы ходит.
Все до сих пор описанные опыты объяснялись при посредстве хорошо известных законов физики. Но как объяснить то, что мы открыли, изучая вращение и смещение молекул? Дон Эйглер повторил наши эксперименты с атомами ксенона на металлической поверхности. И пропускал «большой» электрический ток через свой одиночный атом. Да мыслимо ли это? В нашем масштабе величин ток, проходящий через некую материальную электрическую цепь, нагревает эту цепь (точнее, вещество, из которого она состоит). Когда же сильный ток проходил через атом ксенона, то, как увидел Дон Эйглер, это приводило к тому, что атом подскакивал к игле, находившейся на довольно большом расстоянии от поверхности. Вероятность скачка зависела от силы тока. Но если в нашем макромире действует эффект Джоуля, согласно которому мощность, рассеиваемая в веществе (через которое течет электрический ток), пропорциональна квадрату силы тока, то вероятность скачка, совершаемого атомом, оказалась пропорциональной не второй, но пятой степени силы тока. Никто еще так и не объяснил ни эту разницу между макро-и наномирами, ни то, откуда берется эта пятая степень. Уилсон Хо из Университета в Ирвине, штат Калифорния, споткнулся на подобном же вопросе. Он изучал вероятность приведения малюсенькой молекулы во вращение на металлической поверхности в зависимости от силы тока. Увеличивая силу тока, он заставлял молекулу вращаться и прыгать с места на место, и вероятность этих смещений тоже, как оказалось, зависела от силы приложенного туннельного тока. Итак, Дон Эйглер и Уилсон Хо показали, что молекулы подчиняются таким физическим законам, которые не известны ни в макроскопическом мире, ни в мире мезоскопической шкалы…