Наука и техника, 2007 № 08 (15) - страница 28

стр.

раз. Это уже явный тупик для классических вычислений, если напрямую пробовать моделировать это все безобразие. Для квантового же компьютера — это задача легко решаемая, было бы в процессоре соответствующее число кубитов.

Сейчас в ряде областей (типа молекулярной химии) люди прибегают к эмпирическому, приближенному моделированию, в то время как квантовый компьютер мог бы решать определенный круг интересных задач, так сказать, в лоб. “Квантовая технология обеспечивает точные ответы на задач и, которые сегодня можно решить только в общих чертах”, — говорит глава D-Wave Херб Мартин (Herb Martin).

Хорошо, в теории все выглядит соблазнительно. А-что с практикой? Сразу скажем, какие же частицы физически могут реализовывать кубиты. Это ионы, пойманные в магнитные ловушки и всяческим образом меняющие свое состояние при воздействии лазерных лучей, это сами фотоны, наконец, даже электроны. Последний вариант и применили канадцы. Однако, чтобы из электронов (вернее из целых полчищ электронов) сделать кубиты, нужно было, чтобы целая группа электронов находилась одновременно в одном и том же квантовом состоянии.

Поскольку электрон относится к ферм ионам, таковое “согласованное пребывание” им запрещают законы квантовой физики. Однако если посмотреть на электроны в сверхпроводнике— картина меняется. Там электроны формируют так называемые Куперовские пары, которые являются бозонами, движущимися словно солдаты целой роты в ногу. А это значит, что огромное число таких электронов в куске сверхпроводника находится одновременно в одном квантовом состоянии, представляя собой прекрасный кубит.

Потому канадцы физически сделали свои кубиты в виде элементов из алюминия и ниобия, охлажденных жидким гелием до минус 273,145 градуса по Цельсию, почти до абсолютного нуля. Такой подход называется адиабатным квантовым вычислением.

Как можно воздействовать на кубиты в таком случае? При помощи определенным образом меняющихся магнитных полей. Но как квантовые логические операции, меняющие состояние всех кубитов сразу (примерно так, как в математике существуют операции над матрицами), соотносятся с теми задачами, которые нам собственно и нужно решать? Иными словами — что есть в квантовом компьютере помимо кубитов?



Сердце “Ориона” — процессор в сборе с криогенной системой охлаждения


Это— обычная кремниевая электроника со специальными программами, управляющими тем физическим оборудованием, которое меняет состояние кубитов, а также производит измерение их состояний. Программы эти делятся на три уровня — высокий, средний, низкий и последовательно осуществляют перевод задачи пользователя в набор квантовых операторов, а также — извлекают из квантового процессора “ответы”, преобразуя их в конечный результат.

13 февраля D-Wave предоставила всем желающим возможность посмотреть, как специалисты компании работают на “Орионе”.

Правда, сам этот компьютер не покидал штаб-квартиру фирмы, расположенную близ Ванкувера, — с ним люди связывались через Интернет. Они давали квантовой машине три типа задач: поиск молекулярных структур, соответствующих целевой молекуле, составление плана рассаживания (подробности неизвестны, но, предполагаем, речь идет о решении логической задачи, типа задачи о волке, козе и капусте), а также — решение логической головоломки Судоку (Sudoku).

Важно отметить, что в новом канадском чипе 16 кубитов, и это огромный шаг вперед по сравнению с прежними экспериментами. Согласно принципу квантового параллелизма, выполняя над этими кубитами одну квантовую операцию, канадские умельцы фактически выполняют аналог 65536 обычных операций.

Уже достаете фанфары и литавры? Погодите. Хотя в решении определенных типов задач Orion может быть удивительно сообразительным, в целом он еще в тысячу раз медленнее обычного настольного PC.

Правда, канадцы подчеркивают, что вся архитектура “Ориона” специально продумана, чтобы быть легко масштабируемой. И в то же время исследователи все равно не знают, будет ли это работать в большем размере? Тем не менее, они вовсю работают над более крупными вариантами своего процессора. К концу 2007-го они намерены представить 32-кубитный чип, а в конце 2008-го — 1024-кубитный процессор.