Наука о боли - страница 27

стр.

Еще в 1926 г. Эдриан показал, что интенсивность раздражения регистрируется в виде изменения частоты нервных импульсов. Если слегка коснуться подошвенной подушечки кошки, то в нерве регистрируется быстрый, но кратковременный взрыв импульсов.

Это явление длится не дольше одной пятой секунды и тотчас же затухает. Следовательно, мы записывали возбуждение рецепторов прикосновения. Центральная нервная система получает от них непродолжительный, но вполне достаточный для восприятия сигнал.

За последнее время хорошо изучены электрические потенциалы, возникающие при механических, термических, электрических и химических раздражениях рецепторов. Получены убедительные данные, показывающие, что рецепторы специфичны и отвечают только на адекватные воздействия ( рис. 8 ). Если медленно втыкать острую иглу в подошвенную подушечку кошки, то в чувствительном нерве возникает ряд довольно беспорядочных, медленных импульсов. Эти импульсы отличаются от описанных выше своей силой и продолжительностью. По-видимому, для того, чтобы в центральной нервной системе сформировалось ощущение боли, необходим «массивный» и длительный залп импульсов. Эта «массивность» позволяет ему проникнуть в такие отделы нервной системы, которые недоступны для короткого разряда.

Игго утверждает, что с волокон типа С, передающих болевое раздражение, можно записать до 100 импульсов в 1 сек. В то же время при раздражении механорецепторов, передающих сигналы прикосновения или давления, число импульсов в нерве не превышает 15—40 импульсов в 1 сек.


Рис. 8. Электрическая активность безмякотного нервного волокна при тепловом раздражении кожи. Число разрядов увеличивается по мере повышения температуры раздражителя (от 40 до 68°)

Интересные результаты получил в 1966 г. американский физиолог Скотт. Он раздражал пульпу зуба у кошек и записывал возникающие при этом электрические потенциалы. Как известно, любое раздражение пульпы вызывает боль. Оказалось, что достаточно повысить температуру зуба на 0,1° С, чтобы число регистрируемых электрических разрядов значительно увеличилось. Если температура повысилась на 3,5° С, удается записать до 200— 250 импульсов в 1 секунду.

Запись электрических потенциалов с рецепторов и одиночных нервных волокон позволяет регистрировать еще одно хорошо известное физиологам явление — адаптацию рецепторов . Установлено, что разряд электрических импульсов, возникающий в нервном волокне при раздражении рецепторов, постепенно затухает. Число одиночных сигналов уменьшается, наступает период адаптации. Существуют быстро и медленно адаптирующиеся рецепторы. Наиболее медленно адаптируются холодовые рецепторы. Они способны давать разряды в течение нескольких минут. Медленно адаптируются рецепторы растяжения во внутренних органах.

Игго, изучая адаптацию рецепторов волосяных луковиц кошки, кролика и обезьяны, сделал вывод, что медленно адаптирующиеся рецепторы относятся к двум типам (I и II), различающимся характером электрического ответа и, по-видимому, некоторыми особенностями строения.

Химические и электрические изменения в нерве, возникающие при прохождении импульса, доказывают, что нерв нельзя рассматривать как пассивный проводник, нечто вроде проволоки или кабеля, по которому распространяется «жизненная сила». Нервные волокна, как показали опыты на животных, активно участвуют в распространении импульсов.

Английский физиолог Гассер сравнивает электрические явления в нервах с тиканьем часов. И то и другое является лишь внешним выражением каких-то внутренних механизмов. В основе электрических явлений лежат сложнейшие химические реакции, совершающиеся в клетках и волокнах. По мере прохождения импульса вдоль нервного волокна в нем последовательно возникают электрические и химические изменения. При помощи тонких и чувствительных методов установлено, что при возбуждении в нерве значительно усиливается обмен веществ. Потребление кислорода возрастает на 20—30%, увеличивается выделение углекислоты и аммиака и даже повышается температура, хотя и очень незначительно.

* * *

И наконец, несколько заключительных слов. Современная наука вооружила физиологию и медицину столь тонкими методами исследования животного организма, что подчас они кажутся фантастическими. Применение их для изучения функций центральной и периферической нервной системы, состава крови, состояния сердца, сосудов, легких, желудочно-кишечного тракта стало возможным благодаря блестящим достижениям техники, электроники, кибернетики, бионики. По типу и характеру электрической активности мы судим о состоянии и деятельности головного мозга, сердечно-сосудистой системы, мышц, нервов. Зонд, введенный через вены руки в полости сердца, радиопилюли, «странствующие» по желудку и кишечнику и подающие сигналы о протекающих в них процессах, диагностические машины, искусственные органы, методы реанимации и многое другое — все это пришло в клинику из физиологических лабораторий, это результаты самоотверженного труда целого ряда поколений экспериментаторов, широкого использования смежных наук.