Невозможность второго рода. Невероятные поиски новой формы вещества - страница 27

стр.

Когда Шехтман направил электронный пучок сквозь зерна сплава, чтобы получить дифракционную картину, он обнаружил нечто шокирующее. На первый взгляд изображение состояло из довольно четких пятен, чего и следовало ожидать от кристалла. Однако, к удивлению Шехтмана, расположение пятен демонстрировало симметрию десятого порядка, о невозможности которой он был осведомлен не хуже, чем любой другой ученый в мире.

Шехтман зарисовал изображение на одной странице своего лабораторного журнала, а на другой привел частичный каталог дифракционных пиков и приписал: “10-й порядок???”



Когда Шехтман показал свои результаты коллегам, они не особенно впечатлились. Их тоже учили, что симметрия десятого порядка невозможна. Все они полагали, что странная дифракционная картина может объясняться так называемым множественным двойникованием.

Двойниковый кристалл обычно образуется при сращивании между собой двух по-разному ориентированных кристаллических зерен. Множественное двойникование – это ситуация, когда срастаются три или более зерен, ориентированных под разными углами. Два примера показаны на иллюстрации выше. Слева представлен пример тройного двойникования. Невооруженным глазом видно, что объединившиеся кристаллы ориентированы под тремя разными углами.



Изображение справа – гораздо более хитрое. Это пример множественно-двойникованного золота. Образец состоит из пяти различных клиньев, которые для лучшей различимости обозначены линиями. Атомы – это размытые белые пятна внутри каждого клина. На первый взгляд общая форма напоминает квазикристалл с симметрией пятого порядка. Но это ошибочное впечатление. Это не квазикристалл.

Под микроскопом становится видно, что каждый из пяти клиньев состоит из периодически повторяющихся шестиугольных групп атомов. Следовательно, каждый отдельный клин – это кристалл, подчиняющийся всем законам кристаллографии. В целом же это пример множественно-двойникованного кристалла. То есть это просто группа кристаллов, по воле случая сросшихся пятью клинообразными фрагментами и образовавших форму, напоминающую пятиугольник. Любое твердое тело, состоящее из комбинации кристаллических клиньев, всегда считается кристаллом, вне зависимости от числа и взаиморасположения этих клиньев.

Множественное двойникование встречается повсеместно. Поэтому совершенно естественно, что коллеги Шехтмана, включая Джона Кана, были убеждены, что образец Al>6Mn был просто еще одним примером этого явления. Никто не ожидал обнаружить нечто хоть сколько-нибудь необычное в ходе рутинного описания алюминиевых сплавов. Вся лаборатория просто отмахнулась от находки Шехтмана, посчитав ее ничем не примечательной.

Сам Шехтман, однако, был не согласен. Он не уступал и продолжал убеждать коллег в том, что обнаружил нечто новое. Возражая Шехтману, Джон Кан рассказал о тесте, который позволит разрешить этот спор. Кан предложил Шехтману сфокусировать электронный пучок на очень небольшом участке образца. Если тот является множественно-двойникованным кристаллом, как предполагала вся остальная лаборатория, многие пятна из десятилучевого узора исчезнут, а оставшиеся образуют рисунок с хорошо известными кристаллическими симметриями. С другой стороны, если образец действительно нарушает давно установленные принципы и обладает однородной симметрией десятого порядка, то все пятна, указывающие на десятилучевую симметрию, будут появляться независимо от того, где сфокусирован пучок.

Шехтман вернулся к своему микроскопу и провел решающий эксперимент. В какое бы место образца Al>6Mn он ни смотрел, там обнаруживалась все та же невозможная симметрия десятого порядка. Это был поразительный результат, исключавший банальную версию с множественным двойникованием. История, впрочем, умалчивает, показал ли он результаты Кану или кому-то еще из коллег, прежде чем завершился его двухлетний срок работы в Америке и он вернулся в Израиль.

Известно, однако, что Шехтман не сдался. Он понял, что его открытие настолько скандально, что никто не воспримет его всерьез, пока он не предложит правдоподобного объяснения. Но он был специалистом по электронной микроскопии, а не теоретиком с сильной математической подготовкой. Так что позднее он стал работать с израильским материаловедом Иланом Блехом – в надежде, что тот создаст подходящую теорию.