Нейтрино - призрачная частица атома - страница 6

стр.

Важно понять, что закон сохранения импульса (подобно всем другим законам сохранения, которые я буду упоминать в книге), является результатом экспериментальных наблюдений, а не логических выводов. Точнее говоря, нельзя утверждать, что импульс должен сохраняться при всех условиях. Импульс сохраняется при всех условиях, которые когда-либо наблюдались, и с той степенью точности, с которой его измеряли.

В таком случае, имеем ли мы право утверждать, что закон никогда не нарушается? Все, чем мы располагаем, — это наш опыт, а он может быть недостаточным В начале главы казалось, что существует закон сохранения скорости, но когда опыт расширился, он сам собой отпал. Случится ли что-либо подобное с законом сохранения импульса? Если не сейчас, то когда-нибудь? Да, конечно, может случиться. В последние годы некоторые важные законы сохранения неожиданно перестали существовать. (Позднее я опишу один такой случай.)

Тем не менее, когда наблюдается явление, которое как кажется на первый взгляд, доказывает несостоятельность важного обобщения, ученым следует тщательно изучить это явление. Нельзя ли его интерпретировать так, чтобы оно не противоречило закону? Если это можно сделать, тем лучше.

Но в случае закона сохранения импульса с ним согласуется множество наблюдений, начиная с космических звездных систем и кончая микросистемами субатомных частиц, и ученым в самом деле трудно согласиться с каким-либо его нарушением. Они готовы принять почти любое объяснение нарушения закона, лишь бы спасти обобщение. Закон сохранения импульса оказался так не-обыкновенно полезен на протяжении приблизительно трех столетий, что ученые, естественно, стремятся сохранить его.

Сохранение момента количества движения

Движение не обязательно должно представлять собой изменение положения. Если бильярдный шар быстро вращается, не трогаясь с места, было бы несправедливо считать такой шар неподвижным. Кроме того, шар может двигаться по прямой линии и одновременно вращаться. Любое тело, которое движется по окружности или вращается вокруг своей оси (например, Земля вращается вокруг своей оси и вокруг Солнца), обладает угловой скоростью и имеет угловой импульс, или момент количества движения. По аналогии с обычным импульсом можно также предположить, что момент количества движения равен угловой скорости, умноженной на массу [3]. Но это неверно. Вообразите, что вы стоите на вращающемся столике, держа в каждой руке по тяжелой гире и прижимая их к себе. Вы раскручиваетесь и, если столик вращается почти без трения, будете продолжать вращаться с примерно постоянной угловой скоростью довольно долго. Пусть, например, эта скорость равна двум оборотам в секунду. Если бы момент количества движения равнялся произведению массы на угловую скорость и если бы он сохранялся, вы могли бы изменить угловую скорость, меняя свою массу. Если бы, например, кто-нибудь взял гири из ваших рук, масса на вращающемся столике уменьшилась бы, а ваша угловая скорость увеличилась. Если бы вам в руки дали добавочный груз, ваша угловая скорость уменьшилась бы. Если бы момент количества движения зависел только от массы и угловой скорости, то вы, казалось, могли бы изменить угловую скорость, только изменяя массу.

Предположим, вы стоите на вращающемся столе, держа свои гири у туловища и делая два оборота в секунду. Выпрямите руки с гирями насколько возможно. Внезапно ваша угловая скорость уменьшится, и вы будете двигаться со скоростью, возможно, не более одного оборота в секунду. Прижмите руки опять к туловищу — и угловая скорость станет прежней.

Что же случилось? Ведь общая масса на столе не изменилась от того, что вы вытянули руки! Тогда почему же изменилась угловая скорость? Она должна измениться в ответ на определенные изменения в системе, зависящие не от величины массы. Логично предположить, что в момент количества движения входит расстояние массы от оси вращения. Расстояние части массы (ваших рук с гирями в них) от оси вращения увеличилось. Если это расстояние входит в момент количества движения, следует ожидать уменьшения угловой скорости, компенсирующего увеличение расстояния. Когда руки и гири опять прижаты к туловищу, их расстояние от оси вращения снова уменьшается и угловая скорость увеличивается, компенсируя это уменьшение.