Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) - страница 15

стр.

. Понятие группы было известно до Клейна, но именно он открыл фундаментальную взаимосвязь геометрии и групп преобразований. Так, евклидова геометрия изучает свойства фигур и тел, которые не изменяются при движениях без деформации. К подобным движениям, которые называются изометрическими преобразованиями (в переводе с греческого «изометрия» означает «равного размера»), относится перенос, симметрия, вращение и их композиции. Инвариантами этих преобразований являются, к примеру, расстояние между точками, площадь поверхности, углы между прямыми и так далее.

Аналогично аффинная геометрия изучает свойства фигур, инвариантные относительно аффинных преобразований (к ним относятся изометрические преобразования, растяжения и сжатия). Проективная геометрия изучает свойства, инвариантные относительно группы проекций, топология занимается изучением инвариантов непрерывных преобразований.

Помимо прочего, Клейн доказал, что евклидову геометрию, аффинную геометрию и неевклидовы геометрии можно считать частными случаями проективной геометрии. Если не вдаваться в детали, то доказательство основано на рассмотрении преобразований проективного пространства, которые оставляют неизменным определенное коническое сечение, называемое абсолютным. В зависимости от типа конического сечения результатом будет тот или иной раздел геометрии.

Если оставить в стороне технические вопросы, то это утверждение приводит к очень важному результату: геометрия Евклида является согласованной (непротиворечивой) тогда и только тогда, когда непротиворечивыми являются неевклидовы геометрии. Так был положен конец спорам о том, имеют ли смысл неевклидовы геометрии. Тем не менее еще несколько лет вопрос оставался открытым, так как некоторые исследователи считали рассуждения Клейна ошибочными.

Эрлангенская программа открыла путь к изучению абстрактных геометрических пространств. Теперь математики могли не ограничиваться фигурами на плоскости или в трехмерном пространстве. Стало возможным изучать множество измерений и переменные, которые не обязательно являются пространственными. Например, можно говорить о пространстве переменных термодинамики, описывающих состояние газа, которое может иметь больше трех измерений: давление, объем, температуру и различные концентрации веществ, из которых состоит газ. Мы можем изучать геометрические свойства этих переменных, но уже с абстрактной точки зрения.


О частичке пыльцы и геометрии в природе

Если мы попытаемся описать Вселенную с помощью фигур, которые изучал Евклид, то столкнемся со множеством ограничений. Фигуры геометрии природы очень далеки от идеальных фигур евклидовой геометрии.

В начале XIX в. шотландский ботаник Роберт Броун исследовал каплю жидкости, которая осталась в магматической породе при ее затвердевании. Изучив каплю под микроскопом, Броун увидел следы мельчайших частиц, которые безостановочно совершали абсолютно хаотичные колебания. Он уже наблюдал подобное движение, когда изучал движение частичек пыльцы в воде. Броун дал этому явлению такое объяснение: жизненная сила молекул растения сохранилась спустя много лет после его смерти. Однако впоследствии это объяснение было признано неубедительным. Броун начал склоняться к мысли, что подобные колебания, получившие название броуновского движения, имеют физическую, а не биологическую природу. Например, с уменьшением размеров частиц или с ростом температуры скорость движения частиц увеличивалась.

Лишь в 1905 г. Альберт Эйнштейн изучил броуновское движение с точки зрения кинетической теории газов, разработанной Джеймсом Клерком Максвеллом и Людвигом Больцманом. В наши дни это явление объясняется следующим образом: частица пыльцы, погруженная в жидкость, соударяется с молекулами жидкости, и при каждом соударении траектория частицы изменяется. С одной стороны, отклонения ее движения произвольны, с другой стороны, так как микроскоп позволяет увидеть только колебания определенной величины, истинная траектория частицы намного сложнее наблюдаемой.

Броуновское движение стало одним из первых явлений природы, в котором прослеживаются признаки самоподобия в различном масштабе. На рисунке приведена траектория броуновской частицы, зафиксированная в 1912 г. французским физиком Жаном Батистом Перреном. Положение частицы фиксировалось каждые 30 с.