Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) - страница 29
(коэффициентом масштаба) и количеством частей n, на которые делится исходный объект. Рассмотрим эту взаимосвязь подробнее.
В случае отрезка коэффициент уменьшения r = 1/2, а для восстановления исходного отрезка нужно n = 2 копии. Если коэффициент уменьшения r равен 1/3, то нам понадобится n = 3 копии. Следовательно, во всех случаях n = 1/r. В случае квадрата для коэффициента уменьшения r = 1/2 потребуется n = 4 копии, чтобы восстановить исходный квадрат. Если коэффициент уменьшения r равен 1/3, то нам понадобится n = 9 копий. Во всех случаях будет выполняться соотношение n = 1/г>2.
Выполнив аналогичные подсчеты для куба, получим, что при коэффициенте уменьшения, равном 1/2, для восстановления исходного квадрата потребуется 8 копий, при коэффициенте уменьшения, равном 1/3, — 27 копий. В обоих случаях справедливо соотношение n = 1/r>3. Показатель степени г всегда совпадает с топологической размерностью исходной фигуры.
Однако если мы проведем подобные вычисления для кривой Коха, то получим, что в первой итерации n = 4, r = 1/3. В этом случае взаимосвязь уже не столь очевидна. Руководствуясь результатами, полученными для отрезка и квадрата, предположим, что аналогичное соотношение выполняется и для кривой Коха, следовательно, 4 = 3>D, где D — условная размерность рассматриваемой кривой. Вычислить D очень просто: нужно взять логарифм от обеих частей уравнения. Получим: log 4 = D∙log 3, D = log 4/log 3 = 1,2629. Если мы выполним аналогичные вычисления для второй итерации кривой, получим 16 = 9>D или, что аналогично,
Фотографии Нила, Амазонки и Великих озер, сделанные с самолета. Можно увидеть крайне неравномерную структуру, которая описывается с помощью моделей фрактальной геометрии.
Силуэт большой рыбы, которая съедает маленькую, — аттрактор системы из 11 итерируемых функций. Шесть из них описывают тело рыбы, четыре — хвост, еще одна — силуэт маленькой рыбы. На рисунке приведена третья итерация.
Скульптура, автора которой вдохновил тетраэдр Серпинского. Он строится аналогично треугольнику Серпинского, единственная разница состоит в том, что вместо трех треугольников на плоскости используются четыре тетраэдра в пространстве.
Построение кривой Такаги, или бланманже, из многоугольников. Каждый следующий многоугольник строится на основе предыдущего по алгоритму, известному как «смещение средней точки».
Его использовал еще Архимед для вычисления площади сегмента, ограниченного дугой параболы и ее хордой.
Для создания этих искусственных пейзажей использовался тот же алгоритм, что и при построении графика функции Такаги, но уже в трех измерениях, с некоторыми изменениями и со случайным набором параметров. Генерирование фрактальных пейзажей применяется при съемках многих фильмов.
Некоторые объекты природы, например облака, легче моделируются с помощью фрактальной, а не евклидовой геометрии. Симуляция облаков производится с помощью приема компьютерной графики, который называется плазма. В нем используется коэффициент рассеивания, от которого будет зависеть итоговый результат.
Генетический код растений и других живых существ строится по принципу наименьшего действия. Инструкции, определяющие рост живых организмов, записываются в генетическом коде максимально экономичным образом. Именно поэтому большинство из них обладает свойствами самоподобия и имеет фрактальную структуру.
Изображение объемного множества Мандельброта, полученное с помощью алгоритма, основанного на кривых потенциала. Высота точки определяется числом итераций, после которых орбита этой точки удаляется от начала координат.
Увеличенное изображение объемного множества Мандельброта вблизи вершины большой кардиоиды. Все множество Мандельброта в таком масштабе по размерам будет сопоставимо с орбитой Юпитера. Оно подобно необозримой вселенной, полной замысловатых узоров, в которой обитают слоны, морские коньки, улитки.
Слева направо и сверху вниз представлена последовательность увеличенных изображений множества Мандельброта. Центр каждого изображения примерно совпадает с центром предыдущего.
Множество