Новый взгляд на мир [Фрактальная геометрия] (Мир математики. т.10.) - страница 46

стр.

«Природа (или математическое описание?) множества Мандельброта — это наглядная аналогия того, что в музыке называется «тема с вариациями»: одни и те же шаблоны повторяются повсюду, но всякий раз несколько по-разному… Рассматривая его, мы постоянно будем видеть что-то новое, но при этом снова и снова будут появляться знакомые очертания. Благодаря этой неизменной новизне, множество Мандельброта можно назвать предельным фракталом, так как оно содержит другие фракталы внутри себя. По сравнению с обычными фракталами оно содержит больше элементов, обладает большей гармоничностью, а его неожиданные свойства еще более неожиданны».


САМООПРЕДЕЛЯЕМЫЕ ФРАКТАЛЫ

Существуют различные классификации фракталов по их свойствам. В зависимости от степени самоподобия все фракталы можно разделить на пять больших категорий:

1. Самоповторяющиеся. Эта категория накладывает наиболее строгие ограничения, так как необходимо, чтобы фрактал не изменялся в зависимости от масштаба наблюдений. К этой группе относятся канторово множество, треугольник Серпинского, кривая Пеано, снежинка Коха, кривая дракона, губка Менгера и так далее.

2. Линейные — те, которые строятся с помощью аффинных преобразований. Фракталы этого типа содержат уменьшенные копии всей фигуры целиком, но видоизмененные с помощью линейных функций, как, например, лист папоротника Барнсли.

3. Самоподобные. Фракталы этого типа содержат уменьшенные копии фигуры целиком, видоизмененные с помощью нелинейных функций, как, например, множество Жюлиа.

4. Квазисамоподобные. Фракталы этой группы более или менее идентичны в различном масштабе. Такие фракталы содержат уменьшенные и деформированные копии всей фигуры целиком. Как правило, к этому типу относятся фракталы, определенные с помощью рекурсивных процедур, как, например, множество Мандельброта или фрактал Ляпунова.

5. Статистически самоподобные. Эти фракталы обладают меньшим уровнем самоподобия. В них присутствует какая-либо числовая или статистическая метрика, которая не изменяется в зависимости от масштаба. Сюда относятся случайные фракталы, например траектория броуновского движения, полет Леви, фрактальные пейзажи и броуновские деревья.


Природа не фрактальна

В книгах, посвященных фракталам, часто можно встретить утверждения вида «в природе существует множество фрактальных объектов». В действительности это не совсем так. Когда мы говорим, что, например, граница, дерево или венозная сеть являются фракталами, в действительности имеется в виду, что для них существуют фрактальные модели достаточно высокой точности. В реальном мире не существует фракталов, как не существует прямых или окружностей.

Однако математические модели, описывающие реальность, помогают нам лучше понять ее. Подобно тому как теория относительности описывает орбиту Меркурия точнее, чем ньютоновская механика, фрактальная геометрия описывает форму некоторых объектов точнее, чем геометрия Евклида. Возможно, она точнее описывает и динамику реальных процессов.

Множество Мандельброта содержит бесконечно много деталей, и его рассмотрению в различных масштабах можно посвятить всю жизнь. Точно так же мы можем изучать и реальный мир, начав с молекул, затем перейдя к атомам, а от них — к нейтронам и другим субатомным частицам. Возможно ли, что в один прекрасный день мы достигнем предела? Или же, подобно множеству Мандельброта, предела не существует и здесь? Этого никто не знает.


Избавляемся от мечты о детерминизме

В словарях хаос определяется как «беспорядочная материя, неорганизованная стихия», существовавшая в мировом пространстве до образования известного человеку мира. Однако у ученых есть что добавить к этому определению.

Математическая теория хаоса является частью точной науки. В ней нет места неточностям и неопределенности. Разумеется, название теории хаоса восходит к традиционному смыслу этого слова, но хаос в математике — это не волк, а скорее овца в волчьей шкуре: он открывает нам дорогу в мир хаотичных структур и систем, которыми мы со временем научимся управлять.

Фрактальная геометрия и хаос тесно связаны друг с другом, и понять один из этих разделов математики без другого непросто. Фрактальная геометрия изучает самоподобные и парадоксальные фигуры, а теория хаоса изучает поведение непредсказуемых процессов и занимается поисками упорядоченности в них. Оба этих раздела математики, которые бурно развиваются в последние 20 лет, связаны между собой: среди хаоса формируются фракталы, которые можно использовать в попытках дать определение хаосу. Где же находится точка пересечения теории хаоса и фрактальной геометрии? Теория хаоса возникла в так называемой теории динамических систем. Любая динамическая система состоит из двух частей: состояния (обычно выражается через координаты) и динамики (изменения состояния с течением времени). Эволюцию динамической системы можно представить движением точек в координатном пространстве, каждой точке которого соответствует некое состояние системы. Это пространство называется фазовым пространством. Если эволюция системы подчиняется некоторому закону или законам (даже если их природа неизвестна), они неизменны с течением времени и последующее состояние можно описать через предыдущее, то речь идет о так называемой детерминированной динамической системе. Определение «детерминированная» означает, что эволюцию системы можно предсказать.