Нулик - мореход - страница 5

стр.

- 90 градусам, - выпалил я. - На то он и прямоугольник.

- Ну, а сумма всех четырёх углов квадрата?

- Трёмстам шестидесяти градусам.

- Иначе говоря, числу градусов в окружности.

- Любопытно! - задумался я.- А вот чему равна сумма углов этого прямоугольного острова, натощак не подсчитаешь. Один-то угол у него прямой, а два других невесть какие! Ведь у разных прямоугольных треугольников они могут оказаться любыми.

- Любыми, да не совсем, - сказал Единица. - Каждый из двух других углов должен быть непременно острым, то есть меньше девяноста градусов, потому что сумма всех трёх углов всегда равна ста восьмидесяти градусам.

- Ну да?! - удивился я. - У всех прямоугольных треугольников?

- Не только у прямоугольных. Ста восьмидесяти градусам равна сумма углов всякого треугольника.

Ну и дела! Сговорились они, что ли? Я уж приготовился к очередному вопросу, но тут вахта капитана кончилась, и он удалился в свою каюту, а я побежал к Пи, чтобы поделиться с ним своей потрясающей новостью.

Но Пи сказал, что если это и новость, так только для меня. Лично он узнал об этом много раньше. Ещё вчера!

Ну, я слегка загрустил, но он тут же развеселил меня, сообщив, что с завтрашнего дня мы с ним будем узнавать все потрясающие новости вместе.


Вдоль берега точных доказательств

3 нуляля

Управившись со своими делами, мы с коком вышли на палубу. Капитан был уже там и рассматривал что-то в бинокль. Зюйд-зюйд-ост! - приветствовал он нас.- Фрегат идёт вдоль Берега Точных Доказательств. Здесь надо вести судно особенно осторожно: всюду подстерегают подводные камни. Один неумелый манёвр, и можно утонуть в море Ошибок. Впрочем, штурман Игрек моряк опытный...

-Хотел бы я знать, что это такое - Берег Точных Доказательств? - шепнул я на ухо Пи.

Но капитан всё равно услышал и протянул нам что-то вроде значка. Оказалось, однако, что это не значок, а герб Берега Точных Доказательств. На нём были всякие геометрические фигуры и надпись: "Слава точным и кратким доказательствам!"

Да, это вам не бухта Аксиома, где ничего доказывать нельзя! Здесь не только можно, а и нужно. Но капитан сказал, что без аксиом и тут не проживёшь. Потому что без них ничегошеньки не докажешь. Ни одной теоремы!

Опять новое слово! Теорема. Мы спросили, что это такое, и узнали, что "теорема" - слово греческое, и означает оно "обдумывание". Чтобы доказать теорему, надо много думать.

-В таком случае доказывать теоремы - дело трудное,- сказал я.

Трудное,- согласился капитан,- но вполне возможное. Если только думать логически, то есть последовательно. Умение рассуждать последовательно необходимо каждому, а математику - особенно.

Мы попросили капитана доказать какую-нибудь теорему. Он нарисовал два прямоугольных треугольника (теперь-то я знаю, что это за штука!) и велел запомнить, что точки, где сходятся стороны треугольника, называются вершинами. Таких вершин у треугольника, само собой разумеется, три. Он обозначил их латинскими буквами. В одном треугольнике- большими (А, В, С), в другом - маленькими (а, в, с).

-Эти два треугольника замечательны тем, что меньшие и большие их катеты одинаковы по длине. Требуется доказать, что в этом случае треугольники конгруэнтны.

Как он сказал? Кон-гру... Ну и словечко!

Мы с Пи так хохотали, что чуть в воду не свалились!

-В чём дело? - растерялся капитан.- По-моему, я не сказал ничего смешного.

Лицо у него было такое обиженное, что нам сразу расхотелось смеяться, зато очень захотелось узнать, что за слово такое.

Тут капитан подобрел и спросил, известно ли нам, что такое равенство двух фигур?



- Уж конечно, известно,- бодро заявил я.- Это когда две фигуры равны между собой.

Тут я с капитаном поменялся ролями: на сей раз хохотал он, а обижался я. Но потом он признал, что, в общем-то, объяснение у меня правильное. Только вместо "равны между собой" теперь говорят коротко и ясно - конгруэнтны.

Вот так коротко! Вот так ясно! Да этакого натощак и не выговоришь!

Но капитан сказал, что это разве с непривычки не выговоришь, а вообще-то слово как слово. По-латыни - "совпадение". Если две геометрические фигуры или линии при наложении друг на друга полностью совпадают, значит, они конгруэнтны.